Notification: Our email services are now fully restored after a brief, temporary outage caused by a denial-of-service (DoS) attack. If you sent an email on Dec 6 and haven't received a response, please resend your email.
CFP last date
20 December 2024
Reseach Article

Predicting Loan Repayment Reliability in Cooperative Societies using Naive Bayes Classifier: A Data Mining Approach for Risk Mitigation and Decision Support

by Saiful Kabir, Sihabul Islam Safin, Marjahan Tanjin, Himu Akter, Rajib Ghose, Abhijit Pathak
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 36
Year of Publication: 2024
Authors: Saiful Kabir, Sihabul Islam Safin, Marjahan Tanjin, Himu Akter, Rajib Ghose, Abhijit Pathak
10.5120/ijca2024923937

Saiful Kabir, Sihabul Islam Safin, Marjahan Tanjin, Himu Akter, Rajib Ghose, Abhijit Pathak . Predicting Loan Repayment Reliability in Cooperative Societies using Naive Bayes Classifier: A Data Mining Approach for Risk Mitigation and Decision Support. International Journal of Computer Applications. 186, 36 ( Aug 2024), 16-23. DOI=10.5120/ijca2024923937

@article{ 10.5120/ijca2024923937,
author = { Saiful Kabir, Sihabul Islam Safin, Marjahan Tanjin, Himu Akter, Rajib Ghose, Abhijit Pathak },
title = { Predicting Loan Repayment Reliability in Cooperative Societies using Naive Bayes Classifier: A Data Mining Approach for Risk Mitigation and Decision Support },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2024 },
volume = { 186 },
number = { 36 },
month = { Aug },
year = { 2024 },
issn = { 0975-8887 },
pages = { 16-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number36/predicting-loan-repayment-reliability-in-cooperative-societies-using-naive-bayes-classifier-a-data-mining-approach-for-risk-mitigation-and-decision-support/ },
doi = { 10.5120/ijca2024923937 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-08-28T02:16:49.585316+05:30
%A Saiful Kabir
%A Sihabul Islam Safin
%A Marjahan Tanjin
%A Himu Akter
%A Rajib Ghose
%A Abhijit Pathak
%T Predicting Loan Repayment Reliability in Cooperative Societies using Naive Bayes Classifier: A Data Mining Approach for Risk Mitigation and Decision Support
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 36
%P 16-23
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this research, the primary analysis method is the Naive Bayes Classifier for predicting the reliability of loan repayment in cooperative environments to facilitate credit analysis for a cooperative’s staff. Floor management which means how employees conduct assessments of loans can lead to the formation of non-performing loans as borrowers fail to pay as agreed. To avoid these risks the following evaluation procedures in disbursement of loans are highly relevant and necessary. Thus, drawing on historical member data, this research uses data mining, namely the Naive Bayes Classifier, to predict the chances of smooth loan repayment. The Naive Bayes method is based on the records of various attributes of the members, which include occupation, income, home ownership, amount of loan, and type of loan. These attributes are useful in the prediction of some of the qualities that are useful in decision-making in as much as the loan is concerned. Based on the assessment of the Naive Bayes classifier on the current model, an accuracy rate of 90% was obtained. 00%, an accuracy of 0. 880%, and a recall (Sensitivity) of 83%. , a recall of 33%, and the precision of 100%. These measures indicate the high performance of the proposed model in correctly classifying positive as well as negative loan repayment status. In the subsequent studies, it will be interesting to work on expanding a more appropriate dataset for improving the model’s predictive capability by increasing the variation of individuals’ examples. Hence, the expansion of more intricate computing approaches that consider attributes’ interdependencies may shed light on enhanced methods of risk identification and loan approvals. Through progressive enhancement and creativity in the lending area of operations, the risks involved in lending as well as the overall loaning practices can be controlled and enhanced respectively.

References
  1. Kusrini, Kusrini., M., Rudyanto, Arief. (2023). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Untuk Klasifikasi Kelayakan Pemberian Pinjaman. Infotek, doi: 10.29408/jit.v6i2.20059
  2. Sugeng, Riyadi., Muhammad, Mizan, Siregar., Khairul, fadhli, Fadhli, Margolang., Karina, Andriani. (2022). Analysis of svm and naive bayes algorithm in classification of nad loans in save and loan cooperatives. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), doi: 10.33330/jurteksi.v8i3.1483
  3. Awuza, Abdulrashid, Egwa. (2022). Default Prediction for Loan Lenders Using Machine Learning Algorithms. SLU Journal of Science and Technology, doi: 10.56471/slujst.v5i.222
  4. Ngo, Tien, Luu., Phan, Duy, Hung. (2021). Loan Default Prediction Using Artificial Intelligence for the Borrow - Lend Collaboration.. doi: 10.1007/978-3-030-88207-5_26
  5. Pham, Thanh, Binh., Nguyen, Dinh, Thuan. (2022). Predicting Loan Repayment Using a Hybrid of Genetic Algorithms, Logistic Regression, and Artificial Neural Networks. doi: 10.1007/978-981-19-8069-5_11
  6. Riktesh, Srivastava. (2022). Extrapolation of Loan Default using Predictive Analytics: A Case of Business Analysis. Samvad, doi: 10.53739/samvad/2021/v23/166261
  7. A. Alwi, P. Studi, T. Informatika, F. Teknik, and U. M. Ponorogo, “the Concept of Naive Bayes and Its Simple Use for Prediction Final Konsep Naive Bayes Dan Penggunaannya Secara Sederhana,” J. Tek. Inform., vol. 3, no. 1, pp. 133– 140, 2022.
  8. D. A. Kurniawan and Y. I. Kurniawan, “Aplikasi Prediksi Kelayakan Calon Anggota Kredit Menggunakan Algoritma Naïve Bayes,” J. Teknol. dan Manaj. Inform., vol. 4, no. 1, 2018, doi: 10.26905/jtmi.v4i1.1831.
  9. M. Guntur, J. Santony, and Y. Yuhandri, “Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 354– 360, 2018, doi: 10.29207/resti.v2i1.276.
  10. Pathak, A., Chakraborty, A., Rahaman, M., Rafa, T. S., & Nayema, U. (2024). Enhanced Counterfeit Detection of Bangladesh Currency through Convolutional Neural Networks: A Deep Learning Approach. International Journal of Innovative Research in Computer Science & Technology, 12(2), 10–20. https://doi.org/10.55524/ijircst.2024.12.2.2
  11. S. A. Rizky, R. Yesputra, and S. Santoso, “Prediksi Kelancaran Pembayaran Cicilan Calon Debitur Dengan Metode K-Nearest Neighbor,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 7, no. 2, pp. 195–202, 2021, doi: 10.33330/jurteksi.v7i2.1078.
  12. S. S. Khautsar, D. Puspitasari, and P. wida Mustika, “Algoritma Naïve Bayes Untuk Memprediksi Kredit Macet Pada Koperasi Simpan Pinjam,” J. Inform., vol. 4, no. 2, 2018.
  13. Arna Chakraborty, Arnab Chakraborty, Abdus Sobhan, Abhijit Pathak. Deep Learning for Precision Agriculture: Detecting Tomato Leaf Diseases with VGG-16 Model. International Journal of Computer Applications. 186, 19 ( May 2024), 30-37. DOI=10.5120/ijca2024923599
  14. A. Muzaki and A. Witanti, “Sentiment Analysis of the Community in the Twitter To the 2020 Election in Pandemic Covid-19 By Method Naive Bayes Classifier,” J. Tek. Inform., vol. 2, no. 2, pp. 101–107, 2021, doi: 10.20884/1.jutif.2021.2.2.51.
  15. Corporation, N. C. D. (2012). Annual Report - National Cooperative Development Corporation. http://books.google.ie/books?id=LLTXXZjl_rEC&q=Grameen+Multipurpose+Co-Operative+Society+Ltd&dq=Grameen+Multipurpose+Co-Operative+Society+Ltd&hl=&cd=3&source=gbs_api
  16. M. E. Lasulika, “Komparasi Naïve Bayes, Support Vector Machine Dan KNearest Neighbor Untuk Mengetahui Akurasi Tertinggi Pada Prediksi Kelancaran Pembayaran Tv Kabel,” Ilk. J. Ilm., vol. 11, no. 1, pp. 11–16, 2019, doi: 10.33096/ilkom.v11i1.408.11-16.
  17. F. Ariadi, “Analisa Perbandingan Algoritma DT C.45 dan Naïve Bayes Dalam Prediksi Penerimaan Kredit Motor,” KERNEL J. Ris. Inov. Bid. Inform. dan Pendidik. Inform., vol. 1, no. 1, pp. 1–8, 2020, doi: 10.31284/j.kernel.2020.v1i1.1183.
  18. M. Sadikin, R. Rosnelly, R. Roslina, and ..., “Penerapan Data Mining Pada Penerimaan Dosen Tetap Menggunakan Metode Naive Bayes Classifier dan C4. 5,” J. Media …, vol. 4, no. 4, pp. 1100–1109, 2020, doi: 10.30865/mib.v4i4.2434.
  19. Y. I. Kurniawan, A. Fatikasari, M. L. Hidayat, and M. Waluyo, “Prediction for Cooperative Credit Eligibility Using Data Mining Classification With C4.5 Algorithm,” J. Tek. Inform., vol. 2, no. 2, pp. 67–74, 2021, doi: 10.20884/1.jutif.2021.2.2.49.
  20. Hossen, N. H., Shuvon, N. M. S. S., Barsha, N. J. B., Chy, N. a. A., & Pathak, N. A. (2023). Ultimate cricket experience: Dynamic web app for a real-time scoring system in university cricket. World Journal of Advanced Research and Reviews, 19(2), 1269–1280. https://doi.org/10.30574/wjarr.2023.19.2.1721.
  21. E. Sutoyo and A. Almaarif, “Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 95–101, 2020, doi: 10.29207/RESTI.V4I1.1502
Index Terms

Computer Science
Information Sciences
Loan Repayment Reliability
Cooperative Societies
Naive Bayes Classifier
Conditional Independence
Decision Support.

Keywords

Prediction Smoothness of Installment Payments Data Mining Naive Bayes Classifier Machine Learning.