CFP last date
20 May 2025
Reseach Article

HyRANN-UPD: Enhancing Phishing URL Detection using Ridge Regression-based Feature Selection and Artificial Neural Networks

by Adetokunbo John-Otumu, Victor O. Aniugo, Victor C. Nwachukwu
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 78
Year of Publication: 2025
Authors: Adetokunbo John-Otumu, Victor O. Aniugo, Victor C. Nwachukwu
10.5120/ijca2025924689

Adetokunbo John-Otumu, Victor O. Aniugo, Victor C. Nwachukwu . HyRANN-UPD: Enhancing Phishing URL Detection using Ridge Regression-based Feature Selection and Artificial Neural Networks. International Journal of Computer Applications. 186, 78 ( Apr 2025), 56-62. DOI=10.5120/ijca2025924689

@article{ 10.5120/ijca2025924689,
author = { Adetokunbo John-Otumu, Victor O. Aniugo, Victor C. Nwachukwu },
title = { HyRANN-UPD: Enhancing Phishing URL Detection using Ridge Regression-based Feature Selection and Artificial Neural Networks },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2025 },
volume = { 186 },
number = { 78 },
month = { Apr },
year = { 2025 },
issn = { 0975-8887 },
pages = { 56-62 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number78/hyrann-upd-enhancing-phishing-url-detection-using-ridge-regression-based-feature-selection-and-artificial-neural-networks/ },
doi = { 10.5120/ijca2025924689 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-04-26T02:19:17.181750+05:30
%A Adetokunbo John-Otumu
%A Victor O. Aniugo
%A Victor C. Nwachukwu
%T HyRANN-UPD: Enhancing Phishing URL Detection using Ridge Regression-based Feature Selection and Artificial Neural Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 78
%P 56-62
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Phishing attacks have become a major cybersecurity threat, making it essential to develop advanced detection models to protect online users. This study presents a machine learning-based approach for detecting phishing URLs, utilizing an Artificial Neural Network (ANN) to improve accuracy and reliability. The PhiUSIIL Phishing URL Dataset from the UCI Machine Learning Repository, containing 235,795 instances with 55 features, was used for training and evaluation. The dataset includes 134,850 legitimate URLs and 100,945 phishing URLs, with no missing values. To enhance performance, Ridge Regression (L2 Regularization) was applied to reduce the feature set from 55 to 50, improving efficiency without compromising accuracy. Several machine learning models which include Random Forest (RF), Naïve Bayes (NB), Logistic Regression, K-NN, XGBoost, and ANN were tested to compare their effectiveness. Among them, the ANN model outperformed the others, achieving an accuracy of 98.58%, precision of 97.80%, recall of 97.66%, and an F1-score of 97.65%. The ROC-AUC score of 0.98 further demonstrated the model’s ability to differentiate between phishing and legitimate URLs. The proposed ANN model is efficient, scalable, and suitable for integration into existing security frameworks such as intrusion detection systems and anti-phishing tools. This research contributes to the growing field of AI-driven cybersecurity solutions, offering a highly effective and reliable approach to counter phishing threats.

References
  1. Alazaidah, R., Samara, G., Almatarneh, S., Hassan, M., Aljaidi, M., & Mansur, H. (2023). Multi-Label Classification Based on Associations. Applied Sciences, 13(8), 5081.
  2. Al-Khateeb, M., Al-Mousa, M., Al-Sherideh, A., Almajali, D., Asassfeha, M., & Khafajeh, H. (2023). Awareness model for minimizing the effects of social engineering attacks in web applications. International Journal of Data and Network Science, 7(2), 791-800.
  3. Do, N. Q., Selamat, A., Krejcar, O., Herrera-Viedma, E., & Fujita, H. (2022). Deep learning for phishing detection: Taxonomy, current challenges and future directions. Ieee Access, 10, 36429-36463.
  4. Junoh, A. K., AlZoubi, W. A., Alazaidah, R., & Al-luwaici, W. (2020). New features selection method for multi-label classification based on the positive dependencies among labels. Solid State Technology, 63(2s).
  5. Osho, O., Oluyomi, A., Misra, S., Ahuja, R., Damasevicius, R., & Maskeliunas, R. (2019). Comparative evaluation of techniques for detection of phishing URLs. Communications in Computer and Information Science, 1051 CCIS, 385–394. https://doi.org/10.1007/978-3-030-32475-9_28
  6. Gupta, B. B., Arachchilage, N. A., & Psannis, K. E. (2018). Defending against phishing attacks: taxonomy of methods, current issues and future directions. Telecommunication Systems, 67, 247-267.
  7. Alkhalil, Z., Hewage, C., Nawaf, L., & Khan, I. (2021). Phishing attacks: A recent comprehensive study and a new anatomy. Frontiers in Computer Science, 3, 563060.
  8. Alazaidah, R., & Almaiah, M. A. (2021). Associative classification in multi-label classification: An investigative study. Jordanian Journal of Computers and Information Technology, 7(2).
  9. Al-Batah, M. S., Alzyoud, M., Alazaidah, R., Toubat, M., Alzoubi, H., & Olaiyat, A. (2022). Early Prediction of Cervical Cancer Using Machine Learning Techniques. Jordanian Journal of Computers and Information Technology, 8(4).
  10. Al-Sarem, M., Saeed, F., Al-Mekhlafi, Z. G., Mohammed, B. A., Al-Hadhrami, T., Alshammari, M. T., Alreshidi, A., & Alshammari, T. S. (2021). An optimized stacking ensemble model for phishing websites detection. Electronics (Switzerland), 10(11). https://doi.org/10.3390/electronics10111285
  11. Wen, L., & Hughes, M. (2020). Coastal wetland mapping using ensemble learning algorithms: A comparative study of bagging, boosting and stacking techniques. Remote Sensing, 12(10), 1683.
  12. Alazaidah, R., Alshaikh, A., Almousa, M. R., & Samara, G. (2024). Website phishing detection using machine learning techniques. Journal of Intelligent Information Systems, 63(1), 147-161.
  13. Tamal M. A, Islam M. K, Bhuiyan T, Sattar A, and Prince N. U. (2024). Unveiling suspicious phishing attacks: enhancing detection with an optimal feature vectorization algorithm and supervised machine learning. Frontiers in Computer Science. 6:1428013. doi: 10.3389/fcomp.2024.1428013
  14. Onyiagha C. G., Yanwalo, G. F., and Ajimah N. E. (2024). Phishing URL Detection: A Basic Machine Learning Approach, The International Journal of Science & Technoledge, 12(3): 8 – 14. doi: 10.24940/theijst/2024/v12/i3/ST2403-001
  15. Chy, M. K. H. (2024). Securing the web: Machine learning's role in predicting and preventing phishing attacks, International Journal of Science and Research Archive, 2024, 13(01), 1004–101. https://doi.org/10.30574/ijsra.2024.13.1.1770
  16. Nwokoro, I. S., Okesola, O. J., Sambo, M. Q., Oshodin, O. G., Akinfenwa, T. O., Adom-Oduro, Z. K., and Ahmed S. Y. (2024). Phishing Attacks Prevention using Smart Based Artificial Intelligence Algorithms for Cyber Security Awareness, International Journal of Innovative Research in Technology (IJIRT), 11(2): 1228 – 1235. https://doi.org/10.1177/10439862211001628.
  17. Jain, A. K., & Gupta, B. B. (2019). A machine learning based approach for phishing detection using hyperlinks information. Journal of Ambient Intelligence and Humanized Computing, 10, 2015-2028.
  18. Ammara, Z., Khan, H. U., Yousaf, N., Aslam, F., Anjum, A., & Hamdani, M. (2020). Phishing website detection using diverse machine learning algorithms. Journal of Intelligent Information Systems, 57(2), 287-303
  19. Bibi, H., Shah, S. R., Baig, M. M., Sharif, M., Mehmood, M., Akhtar, Z., & Siddique, K. (2024). Phishing website detection using improved multilayered convolutional neural networks. Journal of Computer Science, 20(9), 1069- 1079. https://doi.org/10.3844/jcssp.2024.1069.1079
  20. Subasi, A., & Kremic, E. (2020). Comparison of AdaBoost with multi boosting for phishing website detection. Procedia Computer Science, 168, 272-278.
  21. Rashid, J., Mahmood, T., Nisar, M. W., & Nazir, T. (2020). Phishing detection using machine learning technique. In 2020 first international conference of smart systems and emerging technologies (SMARTTECH) (pp. 43-46). IEEE.
  22. John-Otumu, A, M., Rahman, M. M., and Oko. C. U. (2021). An Efficient Phishing Website Detection Plugin Service for Existing Web Browsers Using Random Forest Classifier. American Journal of Artificial Intelligence, 5(2), 66-75. https://doi.org/10.11648/j.ajai.20210502.13
  23. Abutaha, M., Ababneh, M., Mahmoud, K., & Baddar, S. A. H. (2021, May). URL phishing detection using machine learning techniques based on URLs lexical analysis. In 2021 12th International Conference on Information and Communication Systems (ICICS) (pp. 147-152). IEEE.
Index Terms

Computer Science
Information Sciences
Cybersecurity
Machine Learning
Phishing Detection
Pattern Recognition
Artificial Intelligence
Algorithms
Web Security
Data Science

Keywords

Phishing URL Detection Artificial Neural Networks Ridge Regression Feature Selection Cybersecurity Machine Learning