CFP last date
20 June 2025
Call for Paper
July Edition
IJCA solicits high quality original research papers for the upcoming July edition of the journal. The last date of research paper submission is 20 June 2025

Submit your paper
Know more
Reseach Article

Tifinagh Document Segmentation based on Texture Attributes

by Yassine Chajri
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 80
Year of Publication: 2025
Authors: Yassine Chajri
10.5120/ijca2025924738

Yassine Chajri . Tifinagh Document Segmentation based on Texture Attributes. International Journal of Computer Applications. 186, 80 ( Apr 2025), 40-44. DOI=10.5120/ijca2025924738

@article{ 10.5120/ijca2025924738,
author = { Yassine Chajri },
title = { Tifinagh Document Segmentation based on Texture Attributes },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2025 },
volume = { 186 },
number = { 80 },
month = { Apr },
year = { 2025 },
issn = { 0975-8887 },
pages = { 40-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number80/tifinagh-document-segmentation-based-on-texture-attributes/ },
doi = { 10.5120/ijca2025924738 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-04-26T02:19:35.301954+05:30
%A Yassine Chajri
%T Tifinagh Document Segmentation based on Texture Attributes
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 80
%P 40-44
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Text-graphic segmentation is a crucial step in document analysis pipeline, particularly for documents that contain a combination of textual content and graphical elements. This paper presents an approach for effectively segmenting text and graphic components in Tifinagh (alphabet used to write Amazigh language) documents. The proposed method consists of using the texture attribute to effectively detect and extract textual areas and graphical objects. Precisely, it is based on the design of two Gabor filter banks, where the first is configured with high frequencies to identify texts, and the second is designed to detect graphical components using low frequencies.

References
  1. Diem, M., Kleber, F., and Sablatnig, R. 2011. Text Classification and Document Layout Analysis of Paper Fragments
  2. Garcia, C. and Apostolidis, X. 2000. Text Detection and Segmentation in Complex Color Images.
  3. Recio, K. R. O., and Mendoza, R. G. 2019. Three-step Approach to Edge Detection of Texts.
  4. Zhou, W., Du, X., and Wang, S. 2021. Techniques for Image Segmentation based on Edge Detection. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Fuzhou, China, pp. 400-403, doi: 10.1109/CEI52496.2021.9574569.
  5. Haji, M. M., and Katebi, S. D. 2006. Machine Learning Approaches to Text Segmentation. Scientia Iranica, Vol. 13, No. 4, pp 395-403.
  6. Maia, A. L. L. M., Julca-Aguilar, F. D., and Hirata, N. S. T. 2018. A Machine Learning Approach for Graph-Based Page Segmentation. 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Parana, Brazil, pp. 424-431, doi: 10.1109/SIBGRAPI.2018.00061.
  7. Rudresh, L. H. N. S., Otageri, S. D. S. M., and Hedge, S. S. 2018. Image understanding: Semantic Segmentation of Graphics and Text using Faster-RCNN. 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS), Bangalore, India, pp. 1-6, doi: 10.1109/ICNEWS.2018.8903963.
  8. Chowdhury, S., Mandal, S., Das, A., and Chanda, B. 2007. Segmentation of Text and Graphics from Document Images. Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), Curitiba, Brazil, pp. 619-623, doi: 10.1109/ICDAR.2007.4376989.
  9. O’Gorman, L. 1993. The Document Spectrum For Page Layout Analysis. IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 15, No. 11.
  10. Kise, K., Sato, A., and Matsumoto, K.. 1997. Document image segmentation as selection of voronoi edges. Proceedings of the 1997 Workshop on Document Image Analysis.
  11. Kise, K., Sato, A., and Matsumoto, K.. 1998. Segmentation of page images using the area voronoi diagram. Computer Vision and Image Understanding, vol. 70, No. 3, pp. 370–382.
  12. Kise, Z., Iwata, M., and Matsumoto, K.. 1999. On the application of voronoi diagrams to page segmentation. Proceedings of the Workshop on Document Layout Interpretation and Its Applications.
  13. Shi, K., and Govindaraju, V. 2004. Line separation for complex document images using fuzzy run length. Document Image Analysis for Libraries, 2004. Proceedings of the First International Workshop on, pp. 306–312.
  14. Sun, H. M. 2006. Enhanced constrained run-length algorithm for complex layout document processing. International Journal of Applied Science and Engineering, vol. 4, No. 3, pp. 297–309.
  15. Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., and Papamarkos, N. 2010. Segmentation Of Historical Machine-Printed Documents Using Adaptive Run Length Smoothing And Skeleton Segmentation Paths. International Journal Of Image And Vision Computing 28, pp. 590–604.
  16. Ha, J., Haralick, R. M., and Phillips, N. 1995. Recursive X-Y Cut Using Bounding Boxes Of Connected Components. Proceedings Of The Third International Conference On Document Analysis And Recognition (ICDAR ).
  17. Sutheebanjard, P., and Premchaiswadi, W. 2010. A Modified Recursive X-Y Cut Algorithm For Solving Block Ordering Problems. 2nd International Conference On Computer Engineering And Technology (ICCET).
  18. Chi, Z., Wang, Q., and Siu, W.C. 2003. Hierarchical content classification and script determination for automatic document image processing. Pattern Recognition, vol. 36, No. 11, pp. 2483– 2500.
  19. Chen, K., Yin, F., and Liu, C.L. 2013. Hybrid Page Segmentation With Efficient Whitespace Rectangles Extraction And Grouping. Pattern Recognition, vol. 36, No. 11, pp. 2483– 2500.
  20. Lin, M. W., Tapamo, J. R., and Ndovie, B. 2007. A Texture-based Method for Document Segmentation and Classification. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, vol. 6, pp. 49-56, 2007.
  21. Etemad, K., Doermann, D. S., and Chellappa, R. 1997. Multiscale segmentation of unstructured document pages using soft decision integration, IEEE Transactions on Pattern Analysis Machine Intelligence, vol. 19, No. 1, pp. 92–96.
  22. Eglin, V. 1998. Contributions à la structuration fonctionnelle des documents imprimés.
  23. Nicolas, S., Kessentini, Y., Paquet, T., and Heutte, L. 1997. Handwritten document segmentation using hidden markov random fields, ICDAR, vol. 1, pp. 212-216
  24. Etemad, K., Doermann, D. S., and Chellappa, R. 1997. Multiscale document page segmentation using soft decision integration. IEEE Transactions on Pattern Analysis Machine Intelligence.
  25. Journet, N, Mullot, R., Eglin, V., and Ramel, J. Y. 2006. Analyse d’images de documents anciens : Catégorisation de contenus par approche texture. Laurence Likforman-Sulem., SDN06, pp. 247-252.
  26. Wang, D, and Srihari, S. N. 1989. Classification of newspaper image blocks using texture analysis. Computer Vision, Graphics, and Image Processing, vol. 47, no. 3, pp. 327-352.
  27. Chajri, Y, and Bouikhalene, B. 2016. Handwritten mathematical symbols dataset Data in Brief, Vol.7, pp. 432-436, ISSN 2352-3409, doi:10.1016/j.dib.2016.02.060.
Index Terms

Computer Science
Information Sciences

Keywords

Tifinagh-Segmentation-Gabor filter- K-means