CFP last date
20 May 2025
Reseach Article

An Automated Sentiment-Driven News Summarization and Categorization System using Web Scraping and NLP

by Divya T.L., Aniketh S., Anup Ganesh M.S.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 81
Year of Publication: 2025
Authors: Divya T.L., Aniketh S., Anup Ganesh M.S.
10.5120/ijca2025924752

Divya T.L., Aniketh S., Anup Ganesh M.S. . An Automated Sentiment-Driven News Summarization and Categorization System using Web Scraping and NLP. International Journal of Computer Applications. 186, 81 ( Apr 2025), 27-31. DOI=10.5120/ijca2025924752

@article{ 10.5120/ijca2025924752,
author = { Divya T.L., Aniketh S., Anup Ganesh M.S. },
title = { An Automated Sentiment-Driven News Summarization and Categorization System using Web Scraping and NLP },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2025 },
volume = { 186 },
number = { 81 },
month = { Apr },
year = { 2025 },
issn = { 0975-8887 },
pages = { 27-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number81/an-automated-sentiment-driven-news-summarization-and-categorization-system-using-web-scraping-and-nlp/ },
doi = { 10.5120/ijca2025924752 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-04-26T02:19:43.106821+05:30
%A Divya T.L.
%A Aniketh S.
%A Anup Ganesh M.S.
%T An Automated Sentiment-Driven News Summarization and Categorization System using Web Scraping and NLP
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 81
%P 27-31
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents an automated system for summarizing and filtering news articles based on sentiment analysis. The system leverages Python-based tools to fetch news headlines using the Google News API, scrape article content using Beautiful Soup and Newspaper3k, and select optimal content through similarity scoring with the sentence-transformers/all-MiniLM-L6-v2 model. Summarization is performed using the Llama 3.2 3B model, while sentiment classification is achieved using the cardiffnlp/twitter-roberta-base-sentiment-latest model. The processed data is stored in Firebase and accessed via an Android app, enabling users to filter negative news and select preferred categories. The system processes 35–40 news articles in 10–11 minutes, significantly outperforming manual efforts. This approach enhances efficiency in news consumption while ensuring scalability across six categories: world, nation, business, technology, entertainment, and sports.

References
  1. B. Logesh Kumaran and N. V. Ravindran, “NLP based Text Summarization Techniques for News Articles,” 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 2024, DOI: 10.1109/IATMSI60426.2024.10503001.
  2. Neelesh K. Shukla, R. Katikeri, M. Raja, G. Sivam, S. Yadav, A. Vaid, and S. Prabhakararao, “Generative AI Approach to Distributed Summarization of Financial Narratives,” 2023 IEEE International Conference on Big Data (BigData), 2023, DOI: 10.1109/BigData59044.2023.10386313.
  3. S. Kaliappan, L. Natrayan, and A. Rajput, “Sentiment Analysis of News Headlines Based on Sentiment Lexicon and Deep Learning,” Proceedings of the Fourth International Conference on Smart Electronics and Communication (ICOSEC-2023), IEEE, 2023, DOI: 10.1109/ICOSEC58147.2023.10276102.
  4. N. Radha, R. Swathika, M. Krishna B, and K. R. Uthayan, “AI-Driven Summarization of Academic Literature using Transformer Model,” 2024 Second International Conference on Inventive Computing and Informatics (ICICI), IEEE, 2024, DOI: 10.1109/ICICI62254.2024.00065.
  5. P. Verma, S. Pal, and H. Om, “A Comparative Analysis on Hindi and English Extractive Text Summarization,” ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 18, no. 3, Article 30, May 2019, pp. 1–39, DOI: 10.1145/3308754.
  6. A. P. Widyassari, S. Rustad, G. F. Shidik, E. Noersasongko, A. Syukur, A. Affandy, and D. R. I. M. Setiadi, “Review of Automatic Text Summarization Techniques & Methods,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 4, pp. 1029–1046, April 2022, DOI: 10.1016/j.jksuci.2020.05.006.
  7. S. Gupta and S. K. Gupta, “Abstractive Summarization: An Overview of the State of the Art,” Expert Systems with Applications, vol. 121, pp. 49–65, May 2019, DOI: 10.1016/j.eswa.2018.12.012.
Index Terms

Computer Science
Information Sciences

Keywords

News summarization sentiment analysis web scraping natural language processing Firebase Realtime Database.