CFP last date
20 May 2025
Reseach Article

On Some Properties of Product of Fibonacci and Lucas Numbers

by Yashwant K. Panwar, Minal Gwala, Ronak Goyal
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 81
Year of Publication: 2025
Authors: Yashwant K. Panwar, Minal Gwala, Ronak Goyal
10.5120/ijca2025924751

Yashwant K. Panwar, Minal Gwala, Ronak Goyal . On Some Properties of Product of Fibonacci and Lucas Numbers. International Journal of Computer Applications. 186, 81 ( Apr 2025), 23-26. DOI=10.5120/ijca2025924751

@article{ 10.5120/ijca2025924751,
author = { Yashwant K. Panwar, Minal Gwala, Ronak Goyal },
title = { On Some Properties of Product of Fibonacci and Lucas Numbers },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2025 },
volume = { 186 },
number = { 81 },
month = { Apr },
year = { 2025 },
issn = { 0975-8887 },
pages = { 23-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number81/on-some-properties-of-product-of-fibonacci-and-lucas-numbers/ },
doi = { 10.5120/ijca2025924751 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-04-26T02:19:43.100708+05:30
%A Yashwant K. Panwar
%A Minal Gwala
%A Ronak Goyal
%T On Some Properties of Product of Fibonacci and Lucas Numbers
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 81
%P 23-26
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This study presenting the properties of numbers that we get by multiplying Fibonacci and Lucas numbers. Namely we define recurrence relation T_(n+2)=3T_(n+1)-T_n, n≥0 with T_0=0, T_1=1 . We investigate some basic properties of product of Fibonacci and Lucas numbers such as the Binet formula, generating function, generalized identity. We shall use the Binet’s formula and generating function for derivation. Also, we present its two cross two matrix representation.

References
  1. Bilgici, G. 2014. New Generalizations of Fibonacci and Lucas Sequences, Applied Mathematical Sciences, 8-29, 1429-1437.
  2. Cahill, N.D. and Narayan, D.A. 2004. Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart., 42-3, 216–221.
  3. Falcon, S., and Plaza, A. 2007. On the k-Fibonacci Numbers, Chaos, Solitons and Fractals, 32-5, 1615-1624.
  4. Feng, J. 2011. Fibonacci identities via the determinant of tridiagonal matrix, Appl. Math. Comput., 217-12, 5978–5981.
  5. Fu, X. and Zhou, X. 2008. On matrices related with Fibonacci and Lucas numbers, Appl. Math. Comput., 200-1, 96–100.
  6. Gao, Y., Jiang, Z. and Gong, Y. 2013. On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers, WSEAS Transactions on Mathematics, 12-4, 472-481.
  7. Gupta, V.K., Panwar, Y.K., and Gupta, N. 2012. Identities of Fibonacci-Like Sequence, J. Math. Comput. Sci., 2-6, 1801-1807.
  8. Gupta, V.K., Panwar, Y.K., and Sikhwal, O. 2012. Generalized Fibonacci Sequences, Theoretical Mathematics & Applications, 2-2, 115-124.
  9. Horadam, A.F. 1961. A Generalized Fibonacci Sequence, American Mathematical Monthly, 68-5, 455-459.
  10. Kilic, E. and Tasci, D. 2007. On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers, Rocky Mountain J. Math., 37-6, 203–219.
  11. Koshy, T. 2001. Fibonacci and Lucas numbers with applications, New York, Wiley-Interscience.
  12. Lu, F. and Jiang, Z. 2013. The sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers representation by matrix, WSEAS Transactions on Mathematics, 12-4, 449-458.
  13. Nalli, A. and Civciv, H. 2009. A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers, Chaos, Solitons Fract., 40-1, 355–361.
  14. Panwar, Y.K., Rathore, G.P.S., and Chawla, R. 2014. On the k-Fibonacci-like numbers, Turkish J. Anal. Number Theory, 2-1, 9-12.
  15. Singh, B., Sikhwal, O., and Bhatnagar, S. 2010. Fibonacci-Like Sequence and its Properties, Int. J. Contemp. Math. Sciences, 5-18, 859-868.
  16. Strang, G. 1998. Introduction to Linear Algebra. 2nd Edition, Wellesley MA, Wellesley Cambridge.
  17. Strang, G. and Borre, K. 1997. Linear Algebra, Geodesy and GPS. Wellesley MA, Wellesley Cambridge.
  18. Wani, A.A., Catarino, P., and Rafiq, R.U. 2018. On the Properties of k-Fibonacci-Like Sequence, International Journal of Mathematics And its Applications, 6(1-A), 187-198.
  19. Wani, A.A., Rathore, G.P.S., and Sisodiya, K. 2016. On The Properties of Fibonacci-Like Sequence, International Journal of Mathematics Trends and Technology, 29-2, 80-86.
  20. Wei, Y., Zheng, Y., Jiang, Z. and Shon, S. 2020. Determinants, inverses, norms, and spreads of skew circulant matrices involving the product of Fibonacci and Lucas numbers, J. Math. Computer Sci., 20-1, 64–78.
Index Terms

Computer Science
Information Sciences

Keywords

Fibonacci number Lucas Number Binet’s formula Generating function and Matrices