CFP last date
20 May 2025
Reseach Article

An Experimental Investigation of Classifying Breast Cancer using Different CNN Models

by Hirenkumar Kukadiya, Divyakant Meva
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 82
Year of Publication: 2025
Authors: Hirenkumar Kukadiya, Divyakant Meva
10.5120/ijca2025924765

Hirenkumar Kukadiya, Divyakant Meva . An Experimental Investigation of Classifying Breast Cancer using Different CNN Models. International Journal of Computer Applications. 186, 82 ( Apr 2025), 18-22. DOI=10.5120/ijca2025924765

@article{ 10.5120/ijca2025924765,
author = { Hirenkumar Kukadiya, Divyakant Meva },
title = { An Experimental Investigation of Classifying Breast Cancer using Different CNN Models },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2025 },
volume = { 186 },
number = { 82 },
month = { Apr },
year = { 2025 },
issn = { 0975-8887 },
pages = { 18-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number82/an-experimental-investigation-of-classifying-breast-cancer-using-different-cnn-models/ },
doi = { 10.5120/ijca2025924765 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-05-01T00:23:13.640282+05:30
%A Hirenkumar Kukadiya
%A Divyakant Meva
%T An Experimental Investigation of Classifying Breast Cancer using Different CNN Models
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 82
%P 18-22
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Breast cancer continues to be one of the most common cancers that affect women worldwide. Improving patient outcomes requires an early and precise diagnosis. The performance of many Convolutional Neural Network (CNN) designs for breast cancer image categorization is compared experimentally in this publication. We tested a number of cutting-edge CNN models, such as VGG16, ResNet50, DenseNet121, EfficientNet, and MobileNet, using a number of publically accessible datasets related to mammography and breast cancer histology. According to our tests, EfficientNet-B3 demonstrated the best trade-off between computational efficiency and performance, while DenseNet121 obtained the highest overall accuracy (94.8%) and F1-score (0.937). Additionally, we suggest a brand-new ensemble method that leverages the advantages of several CNN designs, improving classification accuracy by 2.3% over the top-performing single model. Our results offer important new information for the practical application of deep learning algorithms for the diagnosis of breast cancer.

References
  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249.
  2. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.
  3. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  4. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
  5. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
  6. Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114).
  7. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).
  8. Aličković, E., & Subasi, A. (2017). Breast cancer diagnosis using GA feature selection and Rotation Forest. Neural Computing and Applications, 28(4), 753-763.
  9. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., & Campilho, A. (2017). Classification of breast cancer histology images using convolutional neural networks. PloS One, 12(6), e0177544.
  10. Wang, J., Yang, X., Cai, H., Tan, W., Jin, C., & Li, L. (2016). Discrimination of breast cancer with microcalcifications on mammography by deep learning. Scientific Reports, 6, 27327.
  11. Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501.
  12. Choudhary, A., & Hazra, A. (2019). Breast cancer detection and classification using deep learning approaches: A comprehensive review. Biomedical Signal Processing and Control, 68, 102625.
  13. Khan, S., Islam, N., Jan, Z., Din, I. U., & Rodrigues, J. J. P. C. (2019). A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognition Letters, 125, 1-6.
  14. Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). A dataset for breast cancer histopathological image classification. IEEE Transactions on Biomedical Engineering, 63(7), 1455-1462.
  15. Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K., Gorovoy, M., & Rubin, D. L. (2017). A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific Data, 4, 170177.
  16. Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S. S., Safwan, M., Alex, V., Marami, B., Prastawa, M., Chan, M., Donovan, M., et al. (2019). BACH: Grand challenge on breast cancer histology images. Medical Image Analysis, 56, 122-139.
  17. Macenko, M., Niethammer, M., Marron, J. S., Borland, D., Woosley, J. T., Guan, X., Schmitt, C., & Thomas, N. E. (2009). A method for normalizing histology slides for quantitative analysis. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 1107-1110).
  18. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
  19. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., et al. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.
  20. Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., Jastrzębski, S., Févry, T., Katsnelson, J., Kim, E., et al. (2020). Deep neural networks improve radiologists' performance in breast cancer screening. IEEE Transactions on Medical Imaging, 39(4), 1184-1194.
Index Terms

Computer Science
Information Sciences

Keywords

AI in Healthcare Comparative Analysis Experimental Study Feature Extraction Medical Image Analysis