CFP last date
20 May 2024
Reseach Article

Unsteady free Convection and Mass Transfer Flow of Micropolar Fluid Embedded in a Porous Media

by H. Usman, I. J. Uwanta, A.B. Baffa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 28 - Number 6
Year of Publication: 2011
Authors: H. Usman, I. J. Uwanta, A.B. Baffa
10.5120/3394-4719

H. Usman, I. J. Uwanta, A.B. Baffa . Unsteady free Convection and Mass Transfer Flow of Micropolar Fluid Embedded in a Porous Media. International Journal of Computer Applications. 28, 6 ( August 2011), 6-10. DOI=10.5120/3394-4719

@article{ 10.5120/3394-4719,
author = { H. Usman, I. J. Uwanta, A.B. Baffa },
title = { Unsteady free Convection and Mass Transfer Flow of Micropolar Fluid Embedded in a Porous Media },
journal = { International Journal of Computer Applications },
issue_date = { August 2011 },
volume = { 28 },
number = { 6 },
month = { August },
year = { 2011 },
issn = { 0975-8887 },
pages = { 6-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume28/number6/3394-4719/ },
doi = { 10.5120/3394-4719 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:14:01.605800+05:30
%A H. Usman
%A I. J. Uwanta
%A A.B. Baffa
%T Unsteady free Convection and Mass Transfer Flow of Micropolar Fluid Embedded in a Porous Media
%J International Journal of Computer Applications
%@ 0975-8887
%V 28
%N 6
%P 6-10
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper deals with the unsteady free convection and mass transfer flow of micropolar fluid embedded in a porous media. The governing equations involve the fluid and micropolar velocities respectively, temperature and concentration fields. The effects of material parameters on the velocities, temperature and concentration are discussed. Perturbation method is used to obtain the solutions to the governing equations. Results show that the velocity increases with an increase in Grashof and modified Grashof numbers G and Gm respectively. While an increase in the Prandtl number Pr and Schmidt number Sc lead to a decrease in the temperature and the concentration respectively.

References
  1. Aero, E.L., Bulygin, A.N., Kuvshinskii, E.V. (1965). Asymmetric Hydromechanics. Journal of Applied Mathematical Mechanics. 29: 333 – 346.
  2. Ahmad, Y.B. (2010). Effects of Thermophoresis on Natural Convection boundary layer flow of a Micropolar fluid. Thermal Science 2010, 14(1): 171 – 181.
  3. Dep, N. V. (1968). Equations of Fluid Boundary Layer with Couple Stresses. Journal of Applied Mathematical Mechanics. 32(4): 777 – 783.
  4. Hassanien, I. A. and Essawy, A. H. (2004). Natural convection flow of micropolar fluid from a permeable uniform heat flux surface in porous media. Journal of Applied Mathematics and computation. 152(2): 323-335.
  5. Kim, Y. J. (2001). Unsteady Convection Flow of Micropolar Fluids. Acta Mechanica. 148: 105 – 116.
  6. Kim, Y. J. (2003). Transient mixed radiative convection flow of a Micropolar fluid past a moving, semi infinite vertical porous plate. International Journal of Heat and Mass transfer. 46(10): 1751-1758.
  7. Lok, Y. Y., Amin, N., Pop, I. (2006). Unsteady mixed convection flow of a Micropolar fluid near the stagnation point on a vertical surface. International Journal of Thermal Science. 45 (12): 1149 - 1157
  8. Lukaszewicz, G. (1999). Micropolar Fluids Theory and Applications. Birkhauser, Boston.
  9. Makinde,O.D. and Mhone,P.Y.(2005).Heat transfer to MHD oscillatory flow in a channel filled with porous medium. Rom.journal.phys. (50): 931-938.
  10. Mostafa,A.A. (2009). Thermal radiation effect on Unsteady MHD free convection flow past a vertical plate with temperature dependent viscosity, The Canadian Journal of Chemical Engineering.87 (1): 171 - 181
  11. Soundalgekar, V. M., Takhar, H. S. (1977). MHD Forced and Free Convective Flow Past a Semi- Infinitive Plate. AIAA, J.V. (15): 457 – 458.
  12. Takher, H. S. and Agarwal, R. S. (1998). Mixed Convective flow of a steady incompressible fluid over a stretching sheet. Journal of Research of the National Institute of Standards and Technology. 100(4): 449.
  13. Uwanta,I.J.(2002). Micropolar fluid flow in a channel with Poiseuille effects. ASSETS Series B, 1 (2): 9-23.
  14. Uwanta, I.J. (2008).Effects of mass transfer on laminar convective hydromagnetic flow of radiating gas in a vertical infinite channel. Proceedings of the August 2008 Annual National Conference of Mathematical Association of Nigeria. 89 - 97
Index Terms

Computer Science
Information Sciences

Keywords

Micropolar fluid Grashof number Modified Grashof number Porous plate Prandtl number