Enhancing the robustness and accuracy of time series forecasting models is an active area of research. Recently, Artificial Neural Networks (ANNs) have found extensive applications in many practical forecasting problems. However, the standard backpropagation ANN training algorithm has some critical issues, e.g. it has a slow convergence rate and often converges to a
A Homogeneous Ensemble of Artificial Neural Networks for Time Series Forecasting

local minimum, the complex pattern of error surfaces, lack of proper training parameters selection methods, etc. To overcome these drawbacks, various improved training methods have been developed in literature; but, still none of them can be guaranteed as the best for all problems. In this paper, we propose a novel weighted ensemble scheme which intelligently combines multiple training algorithms to increase the ANN forecast accuracies. The weight for each training algorithm is determined from the performance of the corresponding ANN model on the validation dataset. Experimental results on four important time series depicts that our proposed technique reduces the mentioned shortcomings of individual ANN training algorithms to a great extent. Also it achieves significantly better forecast accuracies than two other popular statistical models.

Reference

A Homogeneous Ensemble of Artificial Neural Networks for Time Series Forecasting


Index Terms

Computer Science

Artificial Intelligence

Key words

Time Series Forecasting

Artificial Neural Network

Ensemble

Backpropagation

Training Algorithm

ARIMA

Support Vector Machine