Abstract

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. Cancer is featured by an irregular, unmanageable growth that may demolish and attack neighboring healthy body tissues or somewhere else in the body. There are dissimilar techniques lives for the naming of cancer but none of those techniques afford considerable
accuracy of detection. Therefore a new method is highly essential for the cancer classification
with improved accuracy. Gene expression profiling by microarray method has been emerged as
an efficient technique for classification and diagnostic prediction of cancer nodules. In recent
times, DNA microarray technique has gained more attraction in both scientific and in industrial
fields. The DNA microarrays are utilized in this paper for the purpose of identifying the presence
of cancer. Statistical ranking has also been used for effective cancer classification. The most
widely used ranking schemes are ANOVA, T-score and Enrichment Score. But, these existing
techniques suffer from the drawbacks of less accuracy, complexity etc. This paper uses liver
cancer data set for experimentation of the proposed technique. The classifier used here is SVM
and FNN. The experimental results shows that the proposed technique has the ability to classify
the cancer cells significantly when compared to the conventional methods of cancer
classification.

Reference

- Hong-Hee Won; Sung-Bae Cho; “Paired neural network with negatively correlated
 features for cancer classification in DNA gene expression profiles”, Proceedings of the
 comparison of neural network and fuzzy c-means methods in bladder cancer cell classification”,
 IEEE International Conference on Neural Networks, IEEE World Congress on Computational
- Bevilacqua, V.; Mastronardi, G.; Menolascina, F.; Pannarale, P.; Pedone, A.; “A Novel
 Multi-Objective Genetic Algorithm Approach to Artificial Neural Network Topology Optimisation:
 The Breast Cancer Classification Problem”, International Joint Conference on Neural Networks
- Joshi, D.M.; Rana, N.K.; Misra, V.M.; “Classification of Brain Cancer using Artificial
 computation and neural network hybrids for breast cancer classification using mammogram and
- Kermani, B.G.; White, M.W.; Nagle, H.T.; “Feature extraction by genetic algorithms for
 neural networks in breast cancer classification”, IEEE 17th Annual Conference Engineering in
- Feng Chu; Lipo Wang; “Applying RBF Neural Networks to Cancer Classification Based on
 Gene Expressions”, International Joint Conference on Neural Networks (IJCNN ‘06), Pp. 1930 –
 1934, 2006.
- Feng Chu; Wei Xie; Lipo Wang; “Gene selection and cancer classification using a fuzzy
- Rui Xu; Anagnostopoulos, G.C.; Wunsch, D.C.I.I.; “Multiclass Cancer Classification Using
 Semisupervised Ellipsoid ARTMAP and Particle Swarm Optimization with Gene Expression
Human Liver Cancer Classification using Microarray Gene Expression Data

- Jin-Hyuk Hong, Sung-Bae Cho, “Cancer classification with incremental gene selection
based on DNA microarray data,” CIBCB ’08, IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 70 – 74, 2008.

Index Terms

Computer Science

Bioinformatics

Key words

Microarray Dataset

Enrichment Score

Correlation Based Ranking

MAPSTD

SVM
FNN