Abstract

Diabetic retinopathy (DR) is an eye disease caused by the complication of diabetes and we should detect it early for effective treatment. As diabetes progresses, the vision of a patient may start deteriorate and lead to diabetic retinopathy. As a result, two groups were identified, namely non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). In this paper, to diagnose diabetic retinopathy, two models like Probabilistic Neural network (PNN) and Support vector machine (SVM) are described and their performances are compared. Experimental results show that PNN has an accuracy of 89.60% and SVM has an accuracy of 97.608%. This infers that the SVM model outperforms the other model.

References

- Advanced Vision Care: http://www.advancedvisioncare.com/conditions.php
- Thomas Walter, Jean-Claude Klein, Pascale Massin, and Ali Erginay, "A
- [HT Nguyen, M Butler, A Roychoudhry, AG Shannon, J Flack, P Mitchell,
 “Classification of Diabetic retinopathy using neural networks”; 18th Annual
 International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam
 1996.
 Microaneurysms in Retinal Angiograms of Diabetic Patients.”
- Huiqi Li and Opas Chutatape, “Fundus Image Features Extraction”;
- María García, Roberto Hornero, Clara I. Sanchez, María I. Lopez and Ana Díez,
 “Feature Extraction and Selection for the Automatic Detection of Hard Exudates in
 Retinal Images”; Proceedings of the 29th Annual International Conference of the IEEE
 EMBS Cite Internationale, Lyon, France, August 23-26, 2007.
- Kenneth W. Tobin, Mohamed Abdelrahman, Edward Chaum, V. Priya Govindasamy,
 Thomas P. Karnowski, “A Probabilistic Framework for Content-Based Diagnosis of
 Retinal Disease”; Proceedings of the 29th Annual International Conference of the IEEE
 EMBS Cite Internationale, Lyon, France August 23-26, 2007.
- S. Chaudhuri, S. Chatterjee and N. Katz, “Detection of blood vessels in retinal images
- Jie Tian, Shanhua Xue, Haining Huang, “Classification of Underwater Objects Based on
 Probabilistic Neural Network”; Fifth International Conference on Natural Computation,
- Katia Estabridis and Rui J. P. de Figueiredo “Automatic Detection and diagnosis
- V. Vijaya Kumari, N. Suriyanarayanan, C. Thanga Saranya, “Feature Extraction
 for Early Detection of Diabetic Retinopathy”; International Conference on Recent
- Alireza Osareh, Majid Mirmehdi, Barry Thomas, and Richard Markham,
 “Classification and Localisation of Diabetic-Related Eye Disease”; Springer-Verlag
 Berlin Heidelberg , pp. 502–516, 2002
- Jian Wu, Guangming Zhang, Yanyan Cao, and Zhiming Cui, “Research on
 Cerebral Aneurysm Image Recognition Method Using Bayesian Classification”;
 Proceedings of the 2009 International Symposium on Information Processing (ISIP);
 Huangshan, P. R. China, August 21-23, pp. 058-062, 2009.
- Yosawin Kangwanariyakul, Chanin Nantasenamat, Tanawut Tantimongcolwat,
 Thanaokorn Naenna, “Data Mining Of Magnetocardiograms For Prediction of Ischemic
 Heart Disease”; EXCLI Journal, 2010.
- Nageswara Rao Pr, Uma Devi T, Dsvkg Kaladhar, Gr Sridhar, Allam Appa Rao, “A
 Probabilistic Neural Network Approach Forprotein Superfamily Classification, Journal of
 Theoretical and Applied Information Technology.
- Inan Guler and Elif Derya U beyli, “Multiclass Support Vector Machinesfor EEG-
 Signals Classification”; IEEE Transactions On Information Technology In Biomedicine,

Fundus Camera: http://en.wikipedia.org/wiki/Fundus_camera

Index Terms

Computer Science
Artificial Intelligence

Keywords

Diabetic Retinopathy
Probabilistic Neural Network
Support Vector Machine
Sensitivity
Specificity