Abstract

Melanoma is considered the most dangerous type of skin cancer. Early and accurate diagnosis depends mainly on important issues, accuracy of feature extracted and efficiency of classifier method. This paper presents an automated method for melanoma diagnosis applied on a set of dermoscopy images. Features extracted are based on gray level Co-occurrence matrix (GLCM) and Using Multilayer perceptron classifier (MLP) to classify between Melanocytic Nevi and Malignant melanoma. MLP classifier was proposed with two different techniques in training and testing process: Automatic MLP and Traditional MLP. Results indicated that texture analysis is a useful method for discrimination of melanocytic skin tumors with high accuracy. The first technique, Automatic iteration counter is faster but the second one, Default iteration counter gives a better accuracy, which is 100 % for the training set and 92 % for the test set.

References

- Fredrik Georgsson and Tor-Björn Holmström, Master Thesis in Computing Science "A Survey and Evaluation of Features for Diagnosis of Malignant Melanoma"; August
Automatic Detection of Melanoma Skin Cancer using Texture Analysis

2005.
- www.cancer.net/patient/Cancer+Types/Melanoma?sectionTitle=Statistics
- H. Harms, H. M. Aus, M. Haucke, U. Gunzer, "Segmentation of stained blood cell images measured at high scanning density with high magnification and high numerical aperture optics, Cytometry;" 1992; 7; 522-531
Automatic Detection of Melanoma Skin Cancer using Texture Analysis

- www.dermoscopic.blogspot.com
- www.dermoscopyatlas.com
- Markus Gipp, Guillermo Marcus, Nathalie Harder, Apichat Suratanee, Karl Rohr, Rainer König, Reinhard Manner "Haralick's Texture Features Computed by GPUs for Biological Applications" IJCS_36_1_09, 36:1,

Index Terms

Computer Science Pattern Recognition

Keywords

Texture Analysis Glcm Cad Melanocytic Nevi Melanoma Ann Mlp