CFP last date
20 September 2024
Reseach Article

BrainLock: A Generic Mu Rhythm based Locking System

by Gove Nitinkumar Rajendra, Rajneesh Kaur Bedi, Bhor Rohan Tatyaba
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 43 - Number 18
Year of Publication: 2012
Authors: Gove Nitinkumar Rajendra, Rajneesh Kaur Bedi, Bhor Rohan Tatyaba
10.5120/6207-8768

Gove Nitinkumar Rajendra, Rajneesh Kaur Bedi, Bhor Rohan Tatyaba . BrainLock: A Generic Mu Rhythm based Locking System. International Journal of Computer Applications. 43, 18 ( April 2012), 39-43. DOI=10.5120/6207-8768

@article{ 10.5120/6207-8768,
author = { Gove Nitinkumar Rajendra, Rajneesh Kaur Bedi, Bhor Rohan Tatyaba },
title = { BrainLock: A Generic Mu Rhythm based Locking System },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 43 },
number = { 18 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 39-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume43/number18/6207-8768/ },
doi = { 10.5120/6207-8768 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:33:47.011448+05:30
%A Gove Nitinkumar Rajendra
%A Rajneesh Kaur Bedi
%A Bhor Rohan Tatyaba
%T BrainLock: A Generic Mu Rhythm based Locking System
%J International Journal of Computer Applications
%@ 0975-8887
%V 43
%N 18
%P 39-43
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Every human activity is controlled and directed by brain. For each such activity there is equivalent action potential which gets generated. This action potential has a corresponding low power electrical signal. For different human actions different electrical signals are generated. This paper gives a definitive study of brain '? rhythms' which are generated during motor imagery activities. The current applications of these rhythms are also briefly elaborated. We also propose a generic mu rhythm based locking system which can be used for home security, bank locker security, vehicle locking and at many other places.

References
  1. Georg E. Fabiani, Dennis J. McFarland, Jonathan R. Wolpaw, GeOE ,Pfurtscheller ,Conversion of EEG activity into cursor movement by a brain-computer interface(BCI), IEEE transactions on neural systems and rehabilitation engineering, Volume 12 No. 3 ,September 2004
  2. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, 3rd Ed. New York: Elsevier/North-Holland, 1991.
  3. Jorge Baztarrica Ochoa, Gary Garcia Molina, Touradj Ebrahimi . EEG Signal Classification for Brain Computer Interface Applications, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, March 28th, 2002
  4. A. Tzelepi, T. Bezerianos, I. Bodis-Wollner, "Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man", clinical neurophysiology volume 111, Issue 2, 1 February 2000, Pages 259-269
  5. R. Hari, R. Salmelin, Human cortical oscillations: a neuromagnetic view through the skull, Trends Neuroscience. 20 (1997) 44-49
  6. E. Niedermeyer, A. Goldszmidt, D. Ryan, "Mu Rhythm Status" and clinical correlates, Clinical EEG Neuroscience. 35 (2004) 84-87
  7. Jaime A. Pieda, The functional significance of mu rhythms: Translating "seeing" and "hearing" into "doing", Brain Research Reviews 50 (2005) 57- 68
  8. W. Storm van Leeuwen, A. Arntz, P. Spoelstra, G. H. Wieneke, The use of computer analysis for diagnosis in routine electroencephalography, Revised Electroencephalography. Neurophysiology. Clinical. 6 (1976) 318-327
  9. C. Babiloni, F. Carducci, F. Cincotti, P. M. Rossini, C. Neuper, G. Pfurtscheller, F. Babiloni, Human movement-related potentials vs. De synchronization of EEG alpha rhythm: a high-resolution EEG study, Neuro image 10 (1999) 658– 665.
  10. S. Cochin, C. Barthelemy, B. Lejeune, S. Roux, J. Martineau, Perception of motion and qEEG activity in human adults, Electroencephalography. Clinical. Neurophysiology. 107 (1998) 287–295.
  11. H. J. Gastaut, J. Bert, EEG changes during cinematographic presentation, Electroencephalography. Clinical. Neurophysiology. 6 (1954) 433– 444.
  12. J. A. Pineda, B. Z. Allison, A. Vankov, The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP's): toward a brain– computer interface (BCI), IEEE Trans. Rehabilitation. Eng. 8 (2000) 219– 222.
  13. L. A. Farwell and E. Donchin, "Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials," Electroencephalography. Clinical. Neurophysiology, vol. 70, no. 6, pp. 510–523, Dec. 1988.
  14. E. E. Sutter, "The brain response interface: communication through visually guided electrical brain responses," J. Microcomputer. Applications. vol. 15, pp. 31–45, 1992.
  15. G. Pfurtscheller, D. Flotzinger, and J. Kalcher, "Brain-computer interface—A new communication device for handicapped persons," J. Microcomputer. Applications. vol. 16, pp. 293–299, 1993.
  16. N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor, "A spelling device for the paralyzed," Nature, vol. 398, no. 6725, pp. 297–298, Mar. 1999.
  17. A. Kubler, B. Kotchoubey, T. Hinterberger, N. Ghanayim, J. Perelmouter, M. Schauer, C. Fritsch, E. Taub, and N. Birbaumer, "The thought translation device: A neurophysiological approach to communication in total motor paralysis," Exp. Brain Res. , vol. 124, no. 2, pp. 223–232, Jan. 1999.
  18. P. R. Kennedy, R. A. Bakay, M. M. Moore, and J. Goldwaithe, "Direct control of a computer from the human central nervous system," IEEE Trans. Rehab. Eng. , vol. 8, pp. 198–202, June 2000.
  19. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain-computer interfaces for communication and control," Electroencephalography. Clinical. Neurophysiology. vol. 113, no. 6, pp. 767–791, June 2002.
  20. D. J. McFarland, G. W. Neat, R. F. Read, and J. R. Wolpaw, "An EEG based method for graded cursor control,Psychobiological" vol. 21, pp. 77–81,1993.
  21. J. R. Wolpaw and D. J. McFarland, "Multichannel EEG-based brain computer communication," Electroencephalography. Clinical. Neurophysiology. vol. 90, pp. 444–449, 1994.
  22. J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans," Proc. Nat. Acad. Sci. USA (Pub 2004), vol. 101(51), pp. 17849–54, Dec. 21, 2004.
  23. Wolpaw, J. R. , McFarland, D. J. , Neat, G. W. and Forneris, C. A. (1991). An EEG-based brain computer interface for cursor control. Electroencephalography Clinical Neurophysiology, 78, 252–259.
  24. Wolpaw, J. R. and McFarland, D. J. (2003). Two-dimensional movement control by scalp-recorded sensorimotor rhythms in humans. Program No. 607. 2. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Online, Washington, DC.
  25. McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. "Mu and beta rhythm topographies during motor imagery and actual movement". Brain Topographies 2000a; 3:177–186.
  26. Wolpaw JR, Flotzinger D, Pfurtscheller G, McFarland DJ. Timing of EEG based cursor control. Clinical Neurophysiology 1997; 16: 529–538.
  27. Vaughan TM, Sarnacki WA, McFarland DJ, Wolpaw JR. EEG-based communication with topographically differentiated mu and beta rhythms. Society of Neuroscience Abstract 1999; 25:1412.
  28. Bhor Rohan T. , Kad Reshma H. , Katariya Payal J. , Rajneesh Kaur Bedi, Gove NitinKumar R. ,"Motor imagery for mouse automation and control", IJCSIS October 2011 issue.
  29. Martin Lotze, Ulrike Halsband, Motor Imagery, Journal of physiology, Paris, 99(2006) 386-395
  30. Cumming J. , Hall C. , 2002 deliberate imagery practice: the development of imagery skills in competitive athletes. J. Sports Sci. 20, 137-145
  31. Bangert M. , Haeusler U. , Altenmuller E. 2001, on proactive: how the brain connects piano keys and piano sounds. Ann. N. Y. Acad. Sci. 930, 425-428.
  32. Gove Nitinkumar Rajendra, Bedi RajneeshKaur, "A new approach to data encryption using genetic algorithms and brain mu waves", IJSER May 2011 issue.
Index Terms

Computer Science
Information Sciences

Keywords

Brain Waves ? Waves Bci Hmi User Interfaces