Abstract

This paper focuses on the stochastic modeling of a computer system of two identical units: one is initially operative and the other is kept as a spare in cold standby. In each unit, hardware (h/w) and software (s/w) components work together and fail independently. There is a single server who visits the system immediately as and when required. The server takes the unit under preventive maintenance after a maximum operation time at normal mode. The h/w components undergo repair at their failure, and are replaced by new ones if they are not repaired up to a maximum repair time. However, s/w components are replaced by new ones instead of repair. Priority is given to the preventive maintenance (PM) of the unit over replacement of the s/w components. The failure time distribution of the components follows a negative exponential whereas the distributions of preventive maintenance, repair, and replacement time are taken as arbitrary with different probability density functions. Several reliability and economic indices have been obtained using semi-Markov and regenerative point technique. The graphical study of the results has also been made.

References

290-293.

Index Terms

| Computer Science | Applied Sciences |

Keywords

<table>
<thead>
<tr>
<th>Computer System</th>
<th>Stochastic Model</th>
<th>Preventive Maintenance</th>
<th>Maximum Operation And Repair Times</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>Reliability</td>
<td>And Economic Measures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>