Abstract

The basic objective of Economic Dispatch (ED) of electric power generation is to schedule the committed generating unit outputs to meet the load demand at minimum operating cost subject to equality and inequality constraints. In recent years with increasing awareness about environmental issues this problem has taken an essential development i.e. economic dispatch now includes the dispatch of power to minimize pollutants (from fossil fuel power generating units), as well as to achieve minimum cost. This paper presents comparative study of two algorithms namely Particle Swarm Optimization (PSO) and Big Bang-Big Crunch Optimization (BB-BC) which are implemented on Environment Friendly BB-BC Optimized Economic Dispatch with Real and Reactive Power Constraints problem. It is shown that the performance of BB-BC method demonstrates superiority over PSO algorithm.

References

- U.ur Güvenç, "Combined Economic Emission Dispatch Solution using Genetic
Algorithm Based on Similarity Crossover; Scientific Research and Essays Vol. 5(17), pp. 2451-2456, 4 September, 2010.

- Y. Labbi, D. Ben Attuos; Big Bang Big Crunch Optimization algorithm for economic dispatch with valve-point effect; Journal of Theoretical and Applied Information Technology.

- Frans Van den Bergh; An Analysis of Particle Swarm Optimizers; University of Pertoria, Pertoria November 2001.

- Hakkl M. Gene; Ibrahim Eksin, Osman K. Erol; Big Bang - Big Crunch Optimization Algorithm Hybridized With Local Directional Moves and Application to Target Motion Analysis Problem; IEEE 201 0.

- Ghaith M. Jaradat, Masri Ayob; Big Bang-Big Crunch Optimization Algorithm to Solve the Course Timetabling Problem; IEEE 2010.

Index Terms

Computer Science

Power Systems
Keywords
Particle Swarm Optimization Big Bang–big Crunch Economic Dispatch Emission Dispatch
Fuel Cost Function
Total Emission Function
Penalty Factor