Abstract

Variable-gain amplifier (VGA) is one of the basic building blocks of many communication systems. In this paper we present a novel structure of VGA with 22 db of gain range and 220 MHz of bandwidth frequency variation. This circuit combines a voltage to current (V-I) converter and two-stage CMOS amplifier to achieve programmable gain and bandwidth. The gain is varied by changing the input voltage (Vin) from -1V to 0V. The maximum bandwidth is about 300 MHz. The gain can be varied from 38 dB to 60 dB in 1 dB gain steps. The overall circuit draws current from 10µA to 150µA at ±1. 5V power supply. The noise figure of the system at maximum gain is 18dB, and the third-order intermodulation intercept point (IIP3) at minimum gain is -8 dBm. Simulations results with static and dynamic behaviour is presented and validated with the technology AMS 0. 35µm. Eventually we have also succeeded in reducing the static power consumption to 0. 5 mW.

References

- Chun-Hsien Wu and Yeh-Ching Chung :"Heterogeneous Wireless Sensor Network"
Low Power Variable gain amplifier with Bandwidth of 80–300 MHz using for Sigma-Delta analogue to digital

- Trung kien Nguyen, Nam Jin Oh, and Viet Hoang Le, Member IEEE 'A Low Power CMOS Direct Conversion Receiver With 3dB NF and 30KHz Flicker-Noise Corner for 915-MHz Band IEEE 802. 15. 4 ZigBee Standard," IEEE Transaction on Microwave Theory and Techniques 2006

Index Terms

Computer Science

Circuit And Systems

Keywords

Radio Frequency Receiver Vga Cmos Analog Integrated Circuits Cmos Ota Design