Abstract

Range and patterns of movement estimation is a crucial concern for clinicians in the diagnostic and functional assessment of patients with musculoskeletal disorder. To obtain a record of the degree of permanent impairment of an individual, Range-Of-Motion (ROM) measures are used. Currently, clinicians use all or any of numerous assessment instruments, a universal goniometer, an inclinometer or a tape measure to make these estimations. However, such tools appear to have major drawbacks in measuring ROM. Markerless vision-based human motion analysis can provide an inexpensive, non-obtrusive solution for range of joint motion measurement. This paper outlines the problem of measuring human joints movements using a computer vision system that supports the physiotherapist as a diagnosis tool to aid rehabilitation of joint movement disorders and its treatment plan.

References

- AnkurAgarwal, Bill Triggs, "Tracking articulated motion using a mixture of autoregressive models", in: Proceedings of the European Conference on Computer Vision
Analyzing and Measuring Human Joints Movements using a Computer Vision System

- Park, W., "Data-Based Human Motion Simulation", in Handbook of Digital Human Modelling, Taylor & Francis Group, LLC, 2009, p. 9.
- Computer aided kinematics and dynamics of mechanical systems, by E. J. Haug, Allyn and Bacon, Boston, 1989.
- Ausejo, S., and Wang, X. (2009), "Motion Capture and Human Motion Reconstruction", in Handbook of Digital Human Modelling, ed. V. Duffy.
- Silva, M., Abe, Y., and Popovic, J., "Simulation of Human Motion Data Using Short-Horizon Model Predictive Control", ACM Transactions on Graphics (TOG) -

- Zhao, J. and Badler, N. I., 1994, "Inverse kinematics positioning using nonlinear programming for highly articulated figures", ACM Trans. Graph., Vol. 13, No. 4, pp.
Analyzing and Measuring Human Joints Movements using a Computer Vision System

- Emily Horn, "Optimization-Based Dynamic Human Motion Prediction", University of Iowa, December 2005, (MS Thesis).
- Hyun-joon Chung, "Optimization-based dynamic prediction of 3D human running", Theses and Dissertations (2009), University of Iowa.

Index Terms

<table>
<thead>
<tr>
<th>Computer Science</th>
<th>Pattern Recognition</th>
</tr>
</thead>
</table>

Keywords

Motion Analysis Range Of Motion Joint Motion Joint Movement Disorders Computer Vision