Abstract

In this paper, an efficient scheme to detect and classify faults in a system using Kalman filtering and hybrid neuro-fuzzy computing techniques, respectively, is proposed. A fault is detected whenever the moving average of the Kalman filter residual exceeds a threshold value. The fault classification has been made effective by implementing a hybrid neuro-fuzzy Inference system. By doing so, the critical information about the presence or absence of a fault is gained in the shortest possible time, with not only confirmation of the findings but also an accurate unfolding-in-time of the finer details of the fault, thus completing the overall fault diagnosis picture of the system under test. The proposed scheme is evaluated extensively on a two-tank process used in industry exemplified by a benchmarked laboratory scale coupled-tank system.

References

de Miguel, L. J., Bla´ zquez, L. F., 2005. Fuzzy logic-based decision-making for fault
Fault Detection and Classification using Kalman Filter and Hybrid Neuro-Fuzzy Systems

- Mo-Yuen Chow, "Special Section on Motor Fault Detection and Diagnosis",
- H. M. Khalid, and A. Khoukhi, "Hybrid Unscented Kalman Filter Neuro Fuzzy Leak
detection and Classification", Best Paper Award, Second Saudi Student Conf. Jeddah,
March 28-30 2011.
- M. A. Rahim, H. M. Khalid, M. Akram A. Khoukhi, , L. Cheded, and R. Doraiswami,
"Quality Monitoring of a closed-loop system with parametric uncertainties and external
disturbances: a fault Diagnosis Approach", Int'l Journal of Advanced Manufacturing
- E. J. Henley. Application of expert systems to fault diagnosis. In "AIChE Annual
- K. Niida. Expert system experiments in processing engineering. In "Inst. Of
- T. S. Ramesh, S. K. Shum, and J. F. Davis. A structured framework for efficient
systems for continuous process operations based upon the task framework. Computers and
- V. Venkatasubramanian. CATDEX, knowledge-based systems in process engineering:
Case studies in heuristic classification. Technical Report, The CACHE Corporation, Austin, TX
(1989).
- T. E. Quantrille and Y. A. Liu. "Artificial Intelligence in Chemical
- C. Rojas Guzman and M. A. Kramer. Comparison of belief networks and rule-based
systems for fault diagnosis of chemical processes. Eng. App. of Artificial Intelligence 3(6),
- M. Wo, W. Gui, D. Shen, and Y. Wang. Export fault diagnosis using role models with
certainty factors for the leaching process. Proc. 3rd World Congress on Intelligent Contr.
- D. Leung and J. Romagnoli. Dynamic probabilistic model-based expert system for fault
and Syst. Safety 70(1), 95—110 (2000).
- K. Watanabe, I. Matsura, M. Abe, M. Kubota, and D. M. Himmelblau. Incipient fault
diagnosis of chemical processes via artificial neural networks. AICHE J. 35(11), 1803—1812
(1989).
- V. Venkatasubramanian and K. Chan. A neural network methodology for process fault
- J. C. Hoskins, K. M. Kaliyur, and D. M. Himmelblau. Fault diagnosis in complex
- V. Venkatasubramanian, R. Vaidyanathan, and Y. Yamamoto. Process fault detection
Fault Detection and Classification using Kalman Filter and Hybrid Neuro-Fuzzy Systems

Index Terms
Computer Science Security

Keywords
Kalman Filter Soft Computing Ann Genetic Algorithm Anfis Fault Detection Fault Isolation
Benchmarked Laboratory Scale Two-tank Systems