Abstract

The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove the noise in order to support any decision making for specialist and automatic heart disorder diagnosis systems. In this paper, the use of Particle Swarm Optimization Neural Network (PSONN) for automatically identifying the cutoff frequency of ECG signal for low-pass filtering is investigated. Generally, the spectrums of the ECG signal are extracted from four classes: normal sinus rhythm, atrial fibrillation, arrhythmia and supraventricular. Baseline wander is removed using the moving median filter. A dataset of the extracted features of the ECG spectrums is used to train the PSONN. The performance of the PSONN with various parameters is investigated. The PSONN-identified cutoff frequency is applied to a Finite Impulse Response (FIR) filter and the resulting signal is evaluated against the original clean and conventional filtered ECG signals. The results show that the intelligent PSONN-based system successfully denoised the ECG signals more effectively than the conventional method.

References

- Robert M. , Ian R. G. The effects of noise on computerized electrocardiogram
Intelligent ECG Signal Noise Removal using PSONN

- Ferguson D., Particle Swarm, University of Victoria, Canada; 2004.

Roger A. , Hans-Jakob S. , Meet the challenge of high-pass filter and ST-segment requirements with a DC-coupled digital electrocardiogram amplifier, J Electrocardiol, 2009; 46 (6), pp. 574-579.

Gerd W. , Manuel S. , Dieter K. , Ralf D. B. , Clemens E. , Verification of humans using the electrocardiogram, Pat Recogn Let, 2011, 28 (10), pp. 1172-1175.

Index Terms

Computer Science Signal Processing
Keywords
Cutoff Frequency Particle Swarm Optimization Neural Network (psonn) Low-pass Filtering Finite Impulse Response (fir)