CFP last date
20 June 2024
Reseach Article

Self-Organizing Map Approach for Identifying Mental Disorders

by Mabruk. Ali Fekihal, Jabar H. Yousif
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 45 - Number 7
Year of Publication: 2012
Authors: Mabruk. Ali Fekihal, Jabar H. Yousif
10.5120/6793-9120

Mabruk. Ali Fekihal, Jabar H. Yousif . Self-Organizing Map Approach for Identifying Mental Disorders. International Journal of Computer Applications. 45, 7 ( May 2012), 25-30. DOI=10.5120/6793-9120

@article{ 10.5120/6793-9120,
author = { Mabruk. Ali Fekihal, Jabar H. Yousif },
title = { Self-Organizing Map Approach for Identifying Mental Disorders },
journal = { International Journal of Computer Applications },
issue_date = { May 2012 },
volume = { 45 },
number = { 7 },
month = { May },
year = { 2012 },
issn = { 0975-8887 },
pages = { 25-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume45/number7/6793-9120/ },
doi = { 10.5120/6793-9120 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:36:59.206879+05:30
%A Mabruk. Ali Fekihal
%A Jabar H. Yousif
%T Self-Organizing Map Approach for Identifying Mental Disorders
%J International Journal of Computer Applications
%@ 0975-8887
%V 45
%N 7
%P 25-30
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Classifications of mental illness such as schizophrenia are very broad; therefore, the proposed approach attains at practical and task-relevant diagnostic categories by use of clustering techniques. A Self-Organizing Feature Map (SOFM) approach was design and implemented for classifying transcribed speech samples and determines mental disorders. An unsupervised Artificial Neural Network was implemented using the NeuroSolution. The proposed classification system is used to determine whether a text or speech sample is generated by a person has mental illness or not. The proposed approach shows clearly that all the categories are identified and classified appropriately, with the proposed SOFM achieving a high accuracy of (97) in the classification phase for predicting the desired output.

References
  1. Joachim Diederich , et. al, (2007). Ex-ray: Data mining and mental health, Applied Soft Computing 7 (2007) 923–928. doi:10. 1016/j. asoc. 2006. 04. 007.
  2. Lodhi, H. ,Saunders, C. ,Shawe-Taylor, J. ,Cristianini, N. , &Watkins, C. (2002). Text classification using string kernels. Journal of Machine Learning Research, 2, 419–444. Paris: EC2 & Cie. http://citeseer. ist. psu. edu/viewdoc/summary?doi=10. 1. 1. 130. 2853
  3. Stehman, Stephen V. (1997). "Selecting and interpreting measures of thematic classification accuracy". Remote Sensing of Environment 62 (1): 77–89. doi:10. 1016/S0034-4257(97)00083-7
  4. Zadeh, L. A. (2001). Applied Soft Computing. Applied Soft Computing 1, 1–2.
  5. Jabar H. Yousif, and Mabruk A. Fekihal," Neural Approach for Determining Mental Health Problems" , Journal of Computing, Volume 4, Issue 1, pp6-11 ISSN 2151-9617 ,NY, USA, January 2012. http://www. scribd. com/JournalofComputing/d/81059229-Neural-Approach-for-Determining-Mental-Health-Problems
  6. Akyol, D. E. (2004). Applications of neural networks to heuristic scheduling algorithms. Computers and Industrial Engineering, 46, 679-696. http://www. sciencedirect. com/science/article/pii/S036083520400066X
  7. Nazeran, H. , &Behbehani, K. (2001). Neural networks in processing and analysis of biomedical signals. In M. Akay (Ed. ), Nonlinear biomedical signal processing: Fuzzy logic, neural networks and new algorithms (pp. 69–97). 8 Teuvo Kohonen, "Self-Organizing Maps" (3rd edition) Springer, ISBN 3540679219 , 2001.
  8. Teuvo Kohonen, "Self-Organizing Maps" (3rd edition) Springer, ISBN 3540679219 , 2001.
  9. Bonissone, P (2002). Hybrid Soft Computing for Classification and Prediction Applications. Conferencia Invitada. 1st International Conference on Computing in an Imperfect World (Soft-Ware 2002), Belfast. DOI: 10. 1007/3-540-46019-5_28
  10. Hovenga, E. J. S. (2004). Globalisation of health and medical informatics education: What are the issues? International Journal of Medical Informatics, 73(2), 101–109. DOI: 10. 1016/j. ijmedinf. 2003. 11. 004
  11. Adelman, H. & Taylor, L. (2006). The current status of mental health in schools: A policy and practice analysis. Los Angeles, CA: Center for Mental Health in Schools at UCLA. http://smhp. psych. ucla. edu/currentstatusmh. htm
  12. MediLexicon International Ltd,Craythorne House, Burnside Mews, London Road, Bexhill-on-Sea, TN39 3LE. http://www. medilexicon. org
  13. Hadzic, M. , Chen, M. , & Dillon ,T. (2008) . Towards the mental health ontology , proceeding of the IEEE International Conf. on Bioinformatics and Biomedicine, USA. DOI: 10. 1109/BIBM. 2008. 59
  14. Clarke, G. , Lynch, F. , Spofford, M. , & DeBar , L. (2006). Trends influencing future delivery of mental health services in large healthcare systems. Clinical Psychology: Science and Practice, 13 (3) , 287-292. doi:10. 1111/j. 1468-2850. 2006. 00040.
  15. Patel, V. , Prince, M. (2010). Global mental health - a new global health field comes of age. JAMA, 303, 1976-1977. doi: 10. 1001/jama. 2010. 616DOI: 10. 2105/AJPH. 2010. 192138.
  16. Lippman R. An introduction to computing with neural nets. IEEE Trans. ASSP Magazine 4, 4-22, 1987.
  17. Imianvan A. A. and Obi J. C. : Diagnostic evaluation of Hepatitis utilizing Fuzzy Clustering Means, World Journal of Applied Science and Technology, Vol. 3. No. 1 (2011). 23-3,http://wojast. com/fullpaper_vol3_1/23-30_Imianvan. pdf
  18. C. R. S. Lopes & et. al. T. B. Ludermir1, M. C. P. de Souto1 e A. B. Ludermir , "Neural Networks for the analysis of Common Mental Disorders Factors. " Proceeding SBRN '02 Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN'02), IEEE Computer Society Washington, DC, USA ©2002 , ISBN:0-7695-1709-9
  19. Abusaa, M. , Diederich, J. and Al Ajmi, A. (2004). Web mining and mental health. In: IAWTIC 2004 Proceedings. International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Gold Coast, Queensland. 12-14 July 2004. http://joachimdiederich. com/assets/IAWTIC04. pdf
  20. Gal Kazas & Michael Margaliot , "Visualizing the topology of mental disorders using selforganizing feature maps". http://www. eng. tau. ac. il/~michaelm/kazas. pdf
  21. Beyer, H. -G. , &Schwefel, H. -P. (2002). Evolution strategies: A comprehensive introduction. Natural Computing: An International Journal, 1(1), 3–52. DOI: 10. 1023/A:1015059928466.
Index Terms

Computer Science
Information Sciences

Keywords

Mental Illness Self-organizing Map Text Clustering Text Classification Unsupervised Learning