This paper proposes that several FFT algorithms such as radix-2, radix-4 and split radix were designed using VHDL with the multiplication complexity reduced more than 30% by using the newly proposed CSD constant multipliers instead of the programmable multipliers and the simulations of standard 0.35 μm. The sizes of FFT/IFFT operations are varied in different applications of OFDM systems. The reorganized Mixed Radix 4-2 Butterfly FFT with bit reversal for the output sequence derived by index decomposition execution is our suggested VLSI system architecture to design the module FFT/IFFT processor for OFDM systems. The output shows that the proposed processor architecture can minimize the area cost while keeping a high-speed processing speed, a decrement of more than 70% of the power consumption/area when compared with complex multiplier

References

- Tai-cheng Lee, Yen-chuan Huang "The design and analysis of a Miller-divider-based clock generator for MBOA-UWB application" solid state circuits. IEEE journal v41, Isu 6 page no. 1253-1261.
Low Power and Small Area Implementation for OFDM Applications

- A High-Speed Low-Complexity Modified FFT Processor for High Rate WPAN Applications; Very Large Scale Integration (VLSI) Systems, IEEE Transactions on volu: pp, Issue: :99 page no 1-5
- Shousheng He and Mats Torkelson; A New Approach to Pipeline FFT Processor; IEEE Parallel Processing Symposium, April. 1996, pp. 776-780.
- Kyung L. Heo, Jae H. Baek, Myung H. Sunwoo, Byung G. Jo, and Byung S. Son; New In-Place Strategy for a Mixed-Radix FFT processor; IEEE SOC Conference, Sep. 2003, pp. 8 1-84.

Index Terms

Computer Science Signal Processing

Keywords
Fft/fft Ofdm Radix24 Radix22 Multiplier