Abstract

This paper proposes that several FFT algorithms such as radix-2, radix-4 and split radix were designed using VHDL with the multiplication complexity reduced more than 30% by using the newly proposed CSD constant multipliers instead of the programmable multipliers and the simulations of standard 0.35 μm. The sizes of FFT/IFFT operations are varied in different applications of OFDM systems. The reorganized Mixed Radix 4-2 Butterfly FFT with bit reversal for the output sequence derived by index decomposition execution is our suggested VLSI system architecture to design the module FFT/IFFT processor for OFDM systems. The output shows that the proposed processor architecture can minimize the area cost while keeping a high-speed processing speed, a decrement of more than 70% of the power consumption/area when compared with complex multiplier.

References

- "A High-Speed Low-Complexity Modified FFT Processor for High Rate WPAN Applications" Very Large Scale Integration (VLSI) Systems, IEEE Transactions on volu
pp,Issue :99 page no 1-5
- Shousheng He and Mats Torkelson, "Design and Implementation of a 1024-point
131-134.
- Shousheng He and Mats Torkelson, "Designing Pipeline FFT Processor for OFDM
- Shousheng He and Mats Torkelson, "A New Approach to Pipeline FFT
- C. Sidney Burrus, "Index Mapping for Multidimensional Formulation of the DFT
- Lihong Jia, Yonghong GAO, Jouni Isoaho, and Hannu Tenhunen, "A New
337-341.
- Martin Vetterli and Pierre Duhamel, "Split-Radix Algorithms for
No. 1, Jan. 1989, pp. 57-64.
- Y. T. Lin, P. Y. Tsai, and T. D. Chiueh, "Low-power variable-length fast Fourier
499-506.
- Byung G. Jo and Myung H. Sunwoo, "New Continuous-Flow Mixed-Radix (CFMR)
FFT Processor Using Novel In-Place Strategy," IEEE Transactions on Circuits and
1349-1358.
- Kyung L. Heo, Jae H. Baek, Myung H. Sunwoo, Byung G. Jo, and Byung S.
Son, "New In-Place Strategy for a Mixed-Radix FFT processor," IEEE SOC Conference,
Sep. 2003, pp. 8 1-84.
- S. He and M. Torkelson, "Designing pipeline FFT processor for OFDM (de)
- J. Melander, Design of SIC FFT Architectures, Linköping Studies in Science and
- J. Y. Oh, J. S. Cha, S. K. Kim, and M. S. Lim, "Implementation of orthogonal
frequency division multiplexing using radix-N pipeline fast Fourier transform (FFT)
2003.

Index Terms

Computer Science

Signal Processing

Keywords

Fft/fft Ofdm Radix24 Radix22 Multiplier