Abstract

This paper proposes that several FFT algorithms such as radix-2, radix-4 and split radix were designed using VHDL with the multiplication complexity reduced more than 30% by using the newly proposed CSD constant multipliers instead of the programmable multipliers and the simulations of standard 0.35 μm. The sizes of FFT/IFFT operations are varied in different applications of OFDM systems. The reorganized Mixed Radix 4-2 Butterfly FFT with bit reversal for the output sequence derived by index decomposition execution is our suggested VLSI system architecture to design the module FFT/IFFT processor for OFDM systems. The output shows that the proposed processor architecture can minimize the area cost while keeping a high-speed processing speed, a decrement of more than 70% of the power consumption/area when compared with complex multiplier.

References

- Bruno Fernandes, Helena Sarmento "Implementation of an 128 FFT for a MB-OFDM Receiver" 978-972-789-304-1 REC'apos;2010 page no 45-48
- Tai-cheng Lee, Yen-chuan Huang "The design and analysis of a Miller-divider-based clock generator for MBOA-UWB application" solid state circuits. IEEE journal v41, lsu 6 page no. 1253-1261.
- "A High-Speed Low-Complexity Modified FFT Processor for High Rate WPAN Applications" Very Large Scale Integration (VLSI) Systems, IEEE Transactions on vol: pp, Issue: 99 page no 1-5
Index Terms

Computer Science Signal Processing

Keywords

Fft/iff Ofdm Radix24 Radix22 Multiplier