Call for Paper - January 2022 Edition
IJCA solicits original research papers for the January 2022 Edition. Last date of manuscript submission is December 20, 2021. Read More

Relative Superior Julia Sets for Complex Carotid-Kundalini Function

Print
PDF
International Journal of Computer Applications
© 2012 by IJCA Journal
Volume 47 - Number 2
Year of Publication: 2012
Authors:
Priti Dimri
Ashish Negi
Udai Bhan Trivedi
10.5120/7161-8794

Priti Dimri, Ashish Negi and Udai Bhan Trivedi. Article: Relative Superior Julia Sets for Complex Carotid-Kundalini Function. International Journal of Computer Applications 47(2):22-30, June 2012. Full text available. BibTeX

@article{key:article,
	author = {Priti Dimri and Ashish Negi and Udai Bhan Trivedi},
	title = {Article: Relative Superior Julia Sets for Complex Carotid-Kundalini Function},
	journal = {International Journal of Computer Applications},
	year = {2012},
	volume = {47},
	number = {2},
	pages = {22-30},
	month = {June},
	note = {Full text available}
}

Abstract

Carotid Kundalini function broadly known as C-K function was introduced by Gordon R. J. Cooper. It is given by the function where z,c andN are complex constants. Cooper presented interesting Julia sets by taking c=(0,0). Rani and Negi introduced a new process for generation of the C-K function and obtained interesting variants of Julia set generated by Cooper an some exciting figures for parameter , for values of c other than (0, 0). In this paper we apply a different iteration process for generation of the Julia set for C-K function and will call them relative superiorC-K Julia sets. Further, different properties like trajectories and fixed point arealso discussed in the paper. We also obtain some exciting figures for the C-K function for values of c other than (0, 0).

References

  • Cooper, G. R. J. : Julia sets for complex Carotid-Kundalinifunction, Computers and Graphics 25(2001),153-158.
  • Cooper, G. R. J. : Chaotic behavior in the Carotid – Kundalini map function, Computer Graphics 2000;24,165-70.
  • Devaney, R. L. : Chaos, Fractals and dynamics, Computer experiments in mathematics, Menlo Park, Addison – Wessley (1992).
  • Devaney, R. L. : The fractal Geometry of the Mandelbrot set , 2. How to count and how to add . Symposium in honor of Benoit Mandelbrot (Curaco 1995), Fractal 1995;3(4),629-40[MR1410283(99d:58095)].
  • Devaney, R. L. and Krych M. : "Dynamics of exp(z)", Ergodic Theory Dynam. Systems4 (1984), 35–52.
  • Devaney, R. L. and Tangerman F. : " Dynamics of entire functions near the essential singularity", Ergodic Theory and Dynamical Systems 6 4 (1986) 489–503.
  • Devaney, R. L. and Tangerman F. : "Dynamics of entire functions near the essential Singularity", Ergodic Theory Dynam. Systems 6 (1986), 489–503.
  • Peitgen, H. O. ; Jurgens, H. ; Saupe, D. : Chaos and Fractals, New frontiers of science, New York Springer,1992 984pp.
  • Eremenko A. : "Iteration of entire functions", Dynamical Systems and Ergodic theory Banach Center Publ. 23, Polish Sc. Pub. , Warsaw 1989, 339-345.
  • Pierre Fatou, " Sur Iteration des functions transcend dantesentires " Acta Math 47(1926),337-378
  • Rani, M. ; Kumar, V. : Superior Julia set, J Korea Soc Math Edu Series D: Res Math Edu 2004; 8(4), 261-277.
  • Rani M. : Iterative Procedures in Fractal and Chaos, Ph. D. Thesis, Department of Computer Science, Gurukul Kangri Vishwavidhayalaya, Hardwar,2002.
  • Julia, G. : Sur 1' iteration des functions rationnelles, J Math Pure Appl. , 1918; 8, 47-245.
  • Rottenfußer G. , Schleicher D. : Escaping Points of the Cosine Family, arXiv: math/0403012 (March 2004)
  • McMullen C. : "Area and Hausdorff dimension of Julia sets of entire functions", Transactions of the American Mathematical Society 300 1 (1987), 329–342.
  • Ishikawa S. : Fixed points by a new iteration method", Proc. Amer. Math. Soc. 44 (1974), 147-150.
  • Rani, Negi A. : Newjulia sets for complex c-k function,
  • ChauhanS. Y ,RanaR. andNegiA. : "New Julia Sets of Ishikawa Iterates", International Journal of Computer Applications 7(13):34–42, October 2010. Published By Foundation of Computer Science. ISBN: 978-93-80746-97-5
  • Rana R. ,Yashwant S Chauhan and Negi A. :. "Non Linear Dynamics of Ishikawa Iteration", International Journal of Computer Applications 7(13):43–49, October 2010. Published By Foundation of Computer Science. ISBN: 978-93-80746-97-5.
  • Chauhan S. Y. ; Rana, R. ; Negi, A. ; New Tricorn & Multicorns of ishikawa Iterates, International Journal of Computer Applications(0975-8887), Vol 7, No. 13, October 2010.
  • Rana R. ,Chauhan, S. Y. andNegi, A. ; Inverse Complex Function Dynamics of Ishikawa Iterates , International Journal of Computer Applications(0975-8887), Vol 9, No. 1, November 2010.
  • Chauhan S. Y. , Rana, R. and Negi, A. ; Complex Dynamics of Ishikawa Iterates for Non integer Values, International Journal of Computer Applications(0975-8887), Vol 9, No. 2, November 2010.
  • Peitgen H. and RichterP. H. , The Beauty of Fractals, Springer-Verlag, Berlin,1986.
  • Henon M. , Commun. Math. Phys. Phys. 50, 69-77 (1976)
  • Negi A. : Generation of Fractals and applications, Ph. D. Thesis, Department of Computer Science, Gurukul Kangri Vishwavidhayalaya, Hardwar,2005