Relative Superior Julia Sets for Complex Carotid-Kundalini Function

Print
International Journal of Computer Applications
© 2012 by IJCA Journal
Volume 47 - Number 2
Year of Publication: 2012
Authors:
Priti Dimri
Ashish Negi
Udai Bhan Trivedi
10.5120/7161-8794

Priti Dimri, Ashish Negi and Udai Bhan Trivedi. Article: Relative Superior Julia Sets for Complex Carotid-Kundalini Function. International Journal of Computer Applications 47(2):22-30, June 2012. Full text available. BibTeX

@article{key:article,
	author = {Priti Dimri and Ashish Negi and Udai Bhan Trivedi},
	title = {Article: Relative Superior Julia Sets for Complex Carotid-Kundalini Function},
	journal = {International Journal of Computer Applications},
	year = {2012},
	volume = {47},
	number = {2},
	pages = {22-30},
	month = {June},
	note = {Full text available}
}

Abstract

Carotid Kundalini function broadly known as C-K function was introduced by Gordon R. J. Cooper. It is given by the function where z,c andN are complex constants. Cooper presented interesting Julia sets by taking c=(0,0). Rani and Negi introduced a new process for generation of the C-K function and obtained interesting variants of Julia set generated by Cooper an some exciting figures for parameter , for values of c other than (0, 0). In this paper we apply a different iteration process for generation of the Julia set for C-K function and will call them relative superiorC-K Julia sets. Further, different properties like trajectories and fixed point arealso discussed in the paper. We also obtain some exciting figures for the C-K function for values of c other than (0, 0).

References

  • Cooper, G. R. J. : Julia sets for complex Carotid-Kundalinifunction, Computers and Graphics 25(2001),153-158.
  • Cooper, G. R. J. : Chaotic behavior in the Carotid – Kundalini map function, Computer Graphics 2000;24,165-70.
  • Devaney, R. L. : Chaos, Fractals and dynamics, Computer experiments in mathematics, Menlo Park, Addison – Wessley (1992).
  • Devaney, R. L. : The fractal Geometry of the Mandelbrot set , 2. How to count and how to add . Symposium in honor of Benoit Mandelbrot (Curaco 1995), Fractal 1995;3(4),629-40[MR1410283(99d:58095)].
  • Devaney, R. L. and Krych M. : "Dynamics of exp(z)", Ergodic Theory Dynam. Systems4 (1984), 35–52.
  • Devaney, R. L. and Tangerman F. : " Dynamics of entire functions near the essential singularity", Ergodic Theory and Dynamical Systems 6 4 (1986) 489–503.
  • Devaney, R. L. and Tangerman F. : "Dynamics of entire functions near the essential Singularity", Ergodic Theory Dynam. Systems 6 (1986), 489–503.
  • Peitgen, H. O. ; Jurgens, H. ; Saupe, D. : Chaos and Fractals, New frontiers of science, New York Springer,1992 984pp.
  • Eremenko A. : "Iteration of entire functions", Dynamical Systems and Ergodic theory Banach Center Publ. 23, Polish Sc. Pub. , Warsaw 1989, 339-345.
  • Pierre Fatou, " Sur Iteration des functions transcend dantesentires " Acta Math 47(1926),337-378
  • Rani, M. ; Kumar, V. : Superior Julia set, J Korea Soc Math Edu Series D: Res Math Edu 2004; 8(4), 261-277.
  • Rani M. : Iterative Procedures in Fractal and Chaos, Ph. D. Thesis, Department of Computer Science, Gurukul Kangri Vishwavidhayalaya, Hardwar,2002.
  • Julia, G. : Sur 1' iteration des functions rationnelles, J Math Pure Appl. , 1918; 8, 47-245.
  • Rottenfußer G. , Schleicher D. : Escaping Points of the Cosine Family, arXiv: math/0403012 (March 2004)
  • McMullen C. : "Area and Hausdorff dimension of Julia sets of entire functions", Transactions of the American Mathematical Society 300 1 (1987), 329–342.
  • Ishikawa S. : Fixed points by a new iteration method", Proc. Amer. Math. Soc. 44 (1974), 147-150.
  • Rani, Negi A. : Newjulia sets for complex c-k function,
  • ChauhanS. Y ,RanaR. andNegiA. : "New Julia Sets of Ishikawa Iterates", International Journal of Computer Applications 7(13):34–42, October 2010. Published By Foundation of Computer Science. ISBN: 978-93-80746-97-5
  • Rana R. ,Yashwant S Chauhan and Negi A. :. "Non Linear Dynamics of Ishikawa Iteration", International Journal of Computer Applications 7(13):43–49, October 2010. Published By Foundation of Computer Science. ISBN: 978-93-80746-97-5.
  • Chauhan S. Y. ; Rana, R. ; Negi, A. ; New Tricorn & Multicorns of ishikawa Iterates, International Journal of Computer Applications(0975-8887), Vol 7, No. 13, October 2010.
  • Rana R. ,Chauhan, S. Y. andNegi, A. ; Inverse Complex Function Dynamics of Ishikawa Iterates , International Journal of Computer Applications(0975-8887), Vol 9, No. 1, November 2010.
  • Chauhan S. Y. , Rana, R. and Negi, A. ; Complex Dynamics of Ishikawa Iterates for Non integer Values, International Journal of Computer Applications(0975-8887), Vol 9, No. 2, November 2010.
  • Peitgen H. and RichterP. H. , The Beauty of Fractals, Springer-Verlag, Berlin,1986.
  • Henon M. , Commun. Math. Phys. Phys. 50, 69-77 (1976)
  • Negi A. : Generation of Fractals and applications, Ph. D. Thesis, Department of Computer Science, Gurukul Kangri Vishwavidhayalaya, Hardwar,2005