Abstract

An Electrocardiogram (ECG) gives significant information for the cardiologist to detect cardiac diseases. Automation algorithm is essential to analyse long ECG data. In this paper, we have proposed fully automated, high efficiency, accurate and fast algorithm to detect abnormalities in ECG based on wavelet transform. The algorithm consists of pre-processing, feature extraction and diagnosis. Number of heart beats and Premature Ventricular Contraction (PVC), Premature Atrial Contractions (PACs), Supraventricular tachyarrhythmia and Bradycardia are diagnosed accurately and result matches with doctors opinion. The average sensitivity of algorithm is 99.70%.

References

- M. Kania et al. 2007. Wavelet Denoising for Multi-lead High Resolution ECG Signals. Measurement Science Review, Volume 7, Section 2, No. 4,
- E. Hostalkova et al. Wavelet Signal And Image Denoising. Institute of Chemical Technology Department of Computing and Control Engineering
- Gordan Cornelia et al, "ECG Signals Processing Using Wavelets" University of Oradea , Electronics Department, Faculty of Electrical Engineering and Information Technology Oradea, Romania.
- Veena N. Hegde et al. 2011. Comparison of Characterizing and Data Analysis Methods for Detecting Abnormalities in ECG. IEEE.
- R. Sudirman et. al. 2010. Modeling Of EEG Signal Sound Frequency Characteristic Using Time Frequency Analysis&q;,. Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation
- Sonia Rezk et. al. 2011. An Algebraic Derivative-Based Method For R Wave Detection. 19th European Signal Processing Conference (EUSIPCO)

Index Terms

Computer Science Biomedical

Keywords

Abnormality Detection Ecg Signal Wavelet Transform Noise Baseline Drift