Abstract

A new reliable protocol called Enhanced Power Control MAC Protocol for Wireless Ad- Hoc Networks (EPCMAC) is proposed in this project work. The key concept of this EPCMAC protocol is to improve the throughput, transport capacity and to save energy by sending all the packets with optimal transmit power. This communication approach promises improved throughput and delay performance by effective use of spatial diversity in wireless ad hoc networks. Also, the power of the data packets is periodically raised to a suitable level but not to the maximum so that it will avoid interference and unnecessary contention between nodes. Throughput enhancement of a wireless ad hoc networking at the MAC layer is achieved through spatial reuse of the channel by allowing concurrent transmissions as much as possible among neighboring nodes. Simulation results show that a considerable gain in throughput as well as high reduction in energy consumption can be obtained by EPCMAC protocol compared to the existing protocols.
Optimal hop distance and power control for a single cell, dense, ad hoc wireless network; in IEEE transactions on mobile computing, accepted for publication, march 2011.

- Kuei-Ping Shih, Member, IEEE, Yen-Da Chen, and Chau-Chieh Chang, A physical/virtual carrier-sense-based power control MAC protocol for collision avoidance in wireless ad hoc networks; IEEE transactions on parallel and distributed systems, vol. 22, no. 2, February 2011.

- Wei Wang, Student Member, IEEE, Vikram Srinivasan, Member, IEEE, and Kee-Chaing Chua, Member, IEEE, Power control for distributed mac protocols in wireless ad hoc networks; in IEEE transactions on mobile computing, vol. 7, no. 8, August 2008.

Index Terms

Computer Science Wireless
Keywords
IEEE 802.11 EPCMAC MAC Protocol PCM OHOP AD HOC NETWORKS