Call for Paper - January 2023 Edition
IJCA solicits original research papers for the January 2023 Edition. Last date of manuscript submission is December 20, 2022. Read More

Molecular Modeling Study of Quercetin and their Metal Complexes

International Journal of Computer Applications
© 2012 by IJCA Journal
Volume 50 - Number 22
Year of Publication: 2012
M. Rajendran
R. Ravichandran
D. Devapiriam

M Rajendran, R Ravichandran and D Devapiriam. Article: Molecular Modeling Study of Quercetin and their Metal Complexes. International Journal of Computer Applications 50(22):30-34, July 2012. Full text available. BibTeX

	author = {M. Rajendran and R. Ravichandran and D. Devapiriam},
	title = {Article: Molecular Modeling Study of Quercetin and their Metal Complexes},
	journal = {International Journal of Computer Applications},
	year = {2012},
	volume = {50},
	number = {22},
	pages = {30-34},
	month = {July},
	note = {Full text available}


A chemical behavior of Quercetin as antioxidant and metal chelator has become the subject of intense experimental research. In this paper, we apply a semi empirical approach to study the stability constant of Quercetin with metals like Cd, Pb and Bi. The comparative analysis of the theoretical formation constant of Quercetin-metal complexes with metals with experimental results shows that H-removal from phenolic -OH site during the metal chelation correlated with experimentally determined stability constant by Job's method. The analysis of the theoretical BDE (Bond Dissociation Energy) values, for all OH sites in Quercetin, clearly shows the importance of the B-ring –OH groups. Mulliken spin density distribution for the radicals formed after H-removal on each OH site of Quercetin is also investigated. The results indicate that 3'-O. and 4'-O. (B-ring) Quercetin radical spin density appears to be more delocalized than the other sites present on A-ring.


  • Afana's ev, I. B. ; Dorozhko, A. I. ; Brodskii, A. V. ; Kostyuk, V. A. ; Potapovitch, A. I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Bichem. Pharmacol. 1989, 38, 1763-1769. [2 McCord, J. M. ; Day. E. D. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. Jr. , FEBS Lett. 1978, 86, 139-142.
  • Halliwell, B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: Is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett. 1978, 92, 321-326.
  • Fernandez, M. T. ; Mira, M. L. ; Florencio, M. H. ; Jennings, K. R. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study J. Inorg. Biochem. 2002, 92, 105-111.
  • Mira, L. ; Fernandez, M. T. ; Santos, M. ; Rocha, R. ; Florenchio, M. H. ; Jennings, K. R. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Res. 2002, 36, 1199-1208.
  • Aruoma, O. Characterization of drugs as antioxidant prophylactics Free Radical Biol. Med. 1996, 20, 675-705.
  • De Souza, R. F. V. ; Sussuchi, E. M. ; De Giovani, W. F. Synthesis and Reactivity in inorganic and metal-organic chemistry. Met. Org. Chem. 2003, 33, 1125.
  • Brown, J. E. ; Khodr, H. ; Hider, R. ; Rice-Evans, C. A. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J. 1998, 330, 1173-1178.
  • Pietta, P. G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035-1042.
  • Eswaramoorthy, S. ; Kumaran, D. ; Keller, Role of metals in the biological activity of Clostridium botulinum neurotoxins. J. Biochemistry. 2004, 43, 2209-2216.
  • Hermes-Lima, M. ; Ponka, P. ; Schulman, H. M. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate Biochim. Biophys. Acta (BBA) General subjects. 2000, 1523, 154-160.
  • Thompson, M. A. (2005) 4. 0. 1 ed. ; Planaria Software LLC: Seattle.
  • Dewar, M. J. S. ; Zoobisch, E. G. ; Healy E. F. ; Stewart, J. J. P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1073 (1985) 3902-3909.
  • Tsimidou, M. Z. ; Nenadis, N. ; Zhang, H-Y. In antioxidant plant phenols. Sources, Structure-Activity Relationship, Current Trends in Analysis and Characterization; D. Boskou, I. Gerothanasis, P. Kefalas, Eds. ; Research Signpost: Kerala. (2006) 29.
  • Wright, J. S. ; Johnson, E. R. ; Dilabio, G. A. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 2001, 123, 1173-1183.
  • Bors, W. ; Heller, W. ; Mihel, C. ; Saran, M. In Methods in Enzymology; Packer, L. Glazer, A. N. Eds. ; Academic Press; San Diego. 1990, 186, 343 -355.
  • Trouillas, P. ; Marsal, P. ; Siri, D. ; Lazzaroni, R. ; Duroux, J-L. A DFT study of the reactivity of OH groupsin quercetin and taxifolin antioxidants: The speci?city of the 3-OH site. Food Chem. 2006, 97, 679-688.
  • Amic, D. ; Lucie, B. Bioorganic & Medicinal Chemistry. 18 (2010) 28.
  • Zhang, H-Y. ; Wang. L-F. ; J. Am. Oil Chem. Soc. 79 (2002) 79.
  • Anouar, E. H. ; Gierschner, J. ; Duroux, J. L. ; Trouillas, P. Food Chemistry. 131 (2012) 79.
  • Szabo, A. ; Oslund, N. S. Modern quantum chemistry:Introduction to advanced electronic structure theory, New-York: Dover Publication. (1982).
  • Leopoldini, M. ; Marino, T. ; Russo, N. ; Toscano, M. Density functional computation of the energetic and spectroscopic parametes of quercetin and its radicals in the gas phase and in solvent, Theoretical Chemistry Accounts. 2004, 111, 210-216.
  • Parkinson, C. J. ; Mayer, P. M. ; Radom, L. Assessment of theoretical procedures for the calculation of reliable radical stabilization energies, Journal of the Chemical Society, Perkin Transaction. 1999,11, 2305-2313.