Abstract

The paper presents a comprehensive survey on International system for EEG (Electroencephalography) signal acquisition. The paper also explored various neuro-imaging techniques and EEG based neurological phenomenon applied for the development of BCI systems extremely useful for able bodied and disabled people. From the survey it is concluded that P300 signal are the most appropriate signal for classifying brain activity using EEG imaging technique.

References

Analyzing EEG based Neurological Phenomenon in BCI Systems

- Abigail A. Baird, "Brain Imaging", http://faculty.vassar.edu/abbaird/resources/brain_science/imaging.php
- Dandan Huang, "EEG-Based Online Two-Dimensional Cursor Control", 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, Minnesota, USA, pp. 4547-4550, September 3-6, 2009.
- Dong Ming, Yuhuan Zhu, Hongzhi Qi, Baikun Wan, Yong Hu, KDK Luk, "Study on EEG-Based Mouse System by Using Brain-Computer Interface", IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems, Hong Kong, China, pp. 236-239, May 11-13, 2009.
- 10-20 International System, io/study.com/measure%20head%20x. swf/, this domain deleted on 5 March, 2012 and pending for removal.
- Ilja Kuzovkin, "Pattern recognition for non-invasive EEG-based BCI", "

10-20 International System, io/study.com/measure%20head%20x. swf/
Analyzing EEG based Neurological Phenomenon in BCI Systems

Bachelor's thesis, University of Tartu Faculty of Mathematics and Computer Science Institute of Computer Science, June 2011
- Raymond Carl Smith, "Electroencephalograph based Brain Computer Interfaces", A thesis presented to University College Dublin (NUl) Dublin, Ireland, Feb 2004
- Pierre Ferrez, "Error-Related EEG Potentials in Brain-Computer Interfaces", ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, EPFL 2007

Index Terms

Computer Science

Biomedical

Keywords

EEG (Electro-Encephalogram) Interface Brain-Computer Interface neurological phenomena
P300

brain imaging techniques