Abstract

Construction of a system for measuring the brain activity (electroencephalogram (EEG)) and recognizing thinking patterns comprises significant challenges, in addition to the noise and distortion present in any measuring technique. One of the most major applications of measuring and understanding EEG is the brain-computer interface (BCI) technology. In this paper, ANNs (feedforward back-prop and Self Organising Maps) for EEG data classification will be implemented and compared to abductive-based networks, namely GMDH (Group Methods of Data Handling) to show how GMDH can optimally (i.e. noise and accuracy) classify a given set of BCI's EEG signals. It is shown that GMDH provides such improvements. In this endeavour, EEG classification based on GMDH will be researched for comprehensible classification without scarifying accuracy. GMDH is suggested to be used to optimally classify a given set of BCI's EEG signals. The other areas related to BCI will also be addressed yet within the context of this purpose.

References

- Bos, D. P. O., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M.,
- Moazzami, M. M. and Mutka, M. 2011. EEG signal Processing in Brain-Computer Interface, Master Thesis, Computer Science Department, Michigan State University, September
- Abdel-Aal, R. E. 2005. Improved Classification of Medical Data Using Abductive Network Committees Trained on Different Feature Subsets, Computer Methods and Programs in Biomedicine, Vol. 80, pp. 141-153
- Schetinin, V. 2001. Polynomial Neural Networks Learnt to Classify EEG Signals, NIMIA-SC2001 - NATO Advanced Study Institute on Neural Networks for Instrumentation, Measurement, and Related Industrial Applications: Study Cases, Crema, Italy, 9-20 October
- Adlakha, A. 2002. Single Trial EEG Classification, Swiss Federal Institute of Technology

Index Terms

Computer Science
Artificial Intelligence
Keywords
GMDH  EEG  BCI  ANN  Supervised ANN  Unsupervised SOM