Comparative Study of Three Different Path Tracking Controls in Mobile Robots

Abstract

This paper presents a comparative study of three different path tracking control laws for the formation of a group of nonholonomic mobile robots. By introducing a unified error of the formation and trajectory tracking using; the dynamic feedback linearization control [1], dynamic-static feedback linearization control [2] and nonlinear time-invariant control [3] are
Comparative Study of Three Different Path Tracking Controls in Mobile Robots

cmpared. The simulations results show that the dynamic-static feedback linearization
technique presents a stable tracking with smoother behaviour and avoiding discontinuities for
tracking trajectory of the robot leader. Finally, this method was implemented experimentally in
three different paths formatting a simple triangle with three mobile robots in a leader-follower
type motion. Moreover, the analysis in this paper reveals some important issues raising that the
following control on this system can be extended to underactuated AUVs in future work.

References

- Gamage, G. W., Mann, G. K. I., Gosine, R. G., Formation Control of Multiple
 Nonholonomic Mobile Robots Via Dynamic Feedback Linearization, In Proceedings
- C. Samson, "Time-varying feedback stabilization of car-like wheeled mobile
- D. Rus, B. Donald, and J. Jennings, "Moving furniture with a team of autonomous
- M. Mataric, M. Nilsson, and K. Simsarian, "Cooperative multi-robot box
- T. Balch and R. Arkin, "Behaviour-based formation control for multirobot
- A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzerm, and C. Taylor, "A
- W. Ren, "Consensus based formation control strategies for multivehicle
- M. -Y. Chow, S. Chiaverini, and C. Kitts, "Guest Editorial introduction to the
 focused section on mechatronics in multirobot systems," IEEE/ASME Trans.
- R. M. Bhatt, C. P. Tang, and V. N. Krovi, "Formation optimization for a fleet of
- M. Egerstedt and X. Hu, "Formation constrained multi-agent control," IEEE
- J. P. Desai, J. Ostrowski and V. Kumar, "Controlling formations of multiple
- M. S. Carlos et al., "Coordinated control of mobile robots based on artificial
- Tilbury D, R. M. Murray, S. S Satry, "Trajectory generation for the n-trailer problem

Index Terms

Computer Science

Control Systems

Keywords

Multiple robot system formation path tracking nonlinear control law