Abstract

In this paper, the power profile for WBAN channel have been generated by using Rayleigh and Weibull distributions. [1]The value of mean path loss has been calculated and compared for different values of carrier frequency, relative body movement and number of scatterers. Moreover, the channel gain profiles have been plotted to obtain mean fading values for the optimum values of carrier frequency, relative body movement velocity and scattering density. Through extensive simulations, those values have been identified which shows minimum fading.
Simulative Investigations of Wireless Body Area Network through Varied Channel Conditions

802.15. BAN"

- V. KAUR, J. MALHOTRA: Performance Evaluation of M-ary Modulations through WBAN Channel IMACST: VOLUME 2
- David B. Smith, Tharaka Lamahewa, Leif W. Hanlen, Dino Miniutti (NICTA), "Simple prediction based power control for the on-body area communications channel".
- David J. Ruprecht, "Body area networks and body sensor networks".
- Lu Shi, Ming Li, Shucheng Yu and Jiawei Yuan, "BANA-Body area network authentication exploiting channel characteristics".
- Christian Hotz, Tovi Grossman, George Fitzmaurice, Anne Agur, "Implanted User Interfaces".
- K. Sayrafian Company [NIST], "A Statistical Path loss model for MICS".
- Erik Karulf, "Body area network".
- Filipe Felisberto, Nuno Costa, Florentino Fdez-Riverola and António Pereira, "Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring".
- Jaamil Y. Khan and Mehmet R. Yuce, "Wireless body area network for Medical Applications".
- Benoit Latre, Bart Braem, Ingrid Moerman, Chris Blondia, Piet Demester, "A Survey on Wireless Body Area Networks".
- Kyung Sup Kwak, Sanaullah and Niamat Ullah, "An Overview of IEEE 802.15.6 Standard".
- Md. Humaun Kabir, Kazi Ashrafuzzaman, Sanaullah Chowdhury and Kyung sup kwak, "Studies of reflectivity and transmissivity in WBAN channel; feasibility of using UWB".
- pub: Sensor (Basel), 2010, 10(6):5503-5529

Index Terms

Computer Science

Wireless
Keywords

Wireless Body Area Network Fading Power profile Fading Path loss

Shadowing