Abstract

In this paper, the power profile for WBAN channel have been generated by using Rayleigh and Weibull distributions. [1]The value of mean path loss has been calculated and compared for different values of carrier frequency, relative body movement and number of scatterers. Moreover, the channel gain profiles have been plotted to obtain mean fading values for the optimum values of carrier frequency, relative body movement velocity and scattering density. Through extensive simulations, those values have been identified which shows minimum fading.

References

- K. Y. Yazdandoost and K. Sayrafian-Pour, "Channel Model for Body Area Network (BAN)," IEEE802.15.6 technical contribution, document ID: 15-08-0780-09-0006, 27 April, 2009, pp. 41-56.
- Huan-Bang Li, Ryuji Kohno; "12 Body Area Network and Its Standardization at IEEE 15-21"
Simulative Investigations of Wireless Body Area Network through Varied Channel Conditions

- V. KAUR, J. MALHOTRA: Performance Evaluation of M-ary Modulations through WBAN Channel IMACST: VOLUME 2
- K. Y. Yazdandoost et al.: Channel model for body area network (BAN), (IEEE P802. 15-08-0033-00-0006, 14 Jan., 2008)
- David B. Smith, Tharaka Lamahewa, Leif W. Hanlen, Dino Miniutti (NICTA), Simple prediction based power control for the on-body area communications channel.
- David J. Ruprecht: Body area networks and body sensor networks.
- Lu Shi, Ming Li, Shucheng Yu and Jiawei Yuan: BANA-Body area network authentication exploiting channel characteristics.
- Christian Holz, Tovi Groseman, George Fitzmaurice, Anne Agur, Implanted User Interfaces.
- K. Sayrafin Company [NIST]: A Statistical Path loss model for MICS.
- Jung-Hwan Hwang, Hyoung Park, Sung Weon Kang, Gajeongno, Yuseong-gu, Daejeon: Channel model for human body for human body communication.
- Filipe Felisberto, Nuno Costa, Florentino Fdez-Riverola and António Pereira: Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring.
- Kyung Sup Kwak, Sana Ullah and Niamat Ullah: An Overview of IEEE 802. 15. 6 Standard.
- Md. Humaun Kabir, Kazi Ashrafuzzaman, Sanaullah Chowdhury and Kyung-sup kwak: Studies of reflectivity and transmissivity in WBAN channel; feasibility of using UWB.

Index Terms

Computer Science

Wireless
Keywords

- Wireless Body Area Network
- Fading
- Power profile
- Fading
- Path loss
- Shadowing