CFP last date
22 April 2024
Reseach Article

Study of Intra Organelle Nanoporation of Multilayer Dense Osteoblast Cell

by S. Sarkar, R Mahapatra, M K Ghose
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 87 - Number 1
Year of Publication: 2014
Authors: S. Sarkar, R Mahapatra, M K Ghose
10.5120/15171-2668

S. Sarkar, R Mahapatra, M K Ghose . Study of Intra Organelle Nanoporation of Multilayer Dense Osteoblast Cell. International Journal of Computer Applications. 87, 1 ( February 2014), 17-22. DOI=10.5120/15171-2668

@article{ 10.5120/15171-2668,
author = { S. Sarkar, R Mahapatra, M K Ghose },
title = { Study of Intra Organelle Nanoporation of Multilayer Dense Osteoblast Cell },
journal = { International Journal of Computer Applications },
issue_date = { February 2014 },
volume = { 87 },
number = { 1 },
month = { February },
year = { 2014 },
issn = { 0975-8887 },
pages = { 17-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume87/number1/15171-2668/ },
doi = { 10.5120/15171-2668 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:04:47.659797+05:30
%A S. Sarkar
%A R Mahapatra
%A M K Ghose
%T Study of Intra Organelle Nanoporation of Multilayer Dense Osteoblast Cell
%J International Journal of Computer Applications
%@ 0975-8887
%V 87
%N 1
%P 17-22
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This research paper represents the theoretical and experimental study of intra organelle nano poration of multi layer osteoblast cell . It is observed that the Pico pulse has the remarkable response for nano pores generation on the intra organelle and chemicals are entered into the cell. The reported study encourage that the efficiency of nanoporation can be control by the specification of micro chip. It is also exposed that the key parameter of nanoporation such as intra organelle voltage, pore radius, pore density, pressure, surface tension and ion uptake are externally controlled by user defined hybrid 3D micro chip.

References
  1. Andre, F. , Mir, L. M. , 2004. Gene Ther. 11, S33–S42.
  2. Andre, F. M. , Gehl, J. , Sersa, G. , Preat, V. , Hojman, P. , Eriksen, J. , Golzio, M. , Cemazar,M. , Pavselj, N. , Rols, M. P. , Miklavcic, D. , Neumann, E. , Teissie, J. , Mir, L. M. , 2008. Hum. Gene Ther. 19 (11), 261–1271.
  3. Beebe, S. J. , Schoenbach, K. H. , 2005. J. Biomed. iotechnol. 4, 297–300.
  4. Beebe, S. J. , White, J. , Blackmore, P. F. , Deng, Y. P. ,Somers, K. , Schoenbach, K. H. , 2003. DNA Cell Biol. 22 (12), 785–796.
  5. Berenger, J. P. , 1996. J. Comput. Phys. 127 (2), 363– 379.
  6. Bowman, A. M. , Nesin, O. M. , Pakhomova, O. N. ,Pakhomov, A. G. , 2010. J. Membr. Biol. 236
  7. Buescher, E. S. , Smith, R. R. , Schoenbach, K. H. ,004. Plasma Sci. IEEE Trans. 32 (4),1563–1572.
  8. Dalmay, C. , Cheray, M. , Pothier, A. , Lalloué, F. ,Jauberteau, M. O. , Blondy, P. , 2010. Sens. Actuat. A: Phys. , doi:10. 1016/j-sna. 2010. 04. 023.
  9. El Amari, S. , Kenaan, M. , Merla, C. , Vergne, B. , Arnaud-Cormos, D. , Leveque, P. , Couderc, V. , 2010. Photon. Technol. Lett. IEEE 22 (21),1577–1579.
  10. Gothelf, A. , Gehl, J. , 2010. Curr. Gene Ther. 10 (4), 287–299.
  11. Heller, L. C. , Heller, R. , 2006. Hum. Gene Ther. 179, 890–897.
  12. Huang, Y. , Rubinsky, B. , 2001. Sens. Actuat. A: Phys. 89 (3), 242–249.
  13. Ibey, B. L. , Xiao, S. , Schoenbach, K. H. , Murphy, M. R. , Pakhomov, A. G. , 2009. Bioelectromagnetics30 (2), 92–99.
  14. Kenaan, M. , El Amari, S. , Silve, A. , Merla, C. , Mir, L. M. , Couderc, V. , Arnaud-Cormos,D. , Leveque, P. , 2010. Biomed. Eng. IEEE Trans. 58 (1), 207–214.
  15. Krishnaswamy, P. , Kuthi, A. , Vernier, P. T. , Gundersen, M. A. , 2007. Dielectr. Electr. Insul. IEEE Trans. 14 (4), 871–877.
  16. Labanauskiene, J. , Gehl, J. , Didziapetriene, J. , 2007. Bioelectrochemistry 70 (1), 78–82.
  17. Le Pioufle, B. , Surbled, P. , Nagai, H. , Murakami, Y. ,Chun, K. S. , Tamiya, E. , Fujita, H. ,2000. Mater. Sci. Eng. C: Biomim. Supramol. Syst. 12 (1–2), 77–81.
  18. Lee, W. G. , Demirci, U. , Khademhosseini, A. , 2009. Integr. Biol. 1 (3), 242–251. Leveque, P. , Dale, C. , Veyret, B. , Wiart, J. , 2004. IEEE Trans. Microw. Theory Tech. 52,(8), 2076–2083.
  19. Leveque, P. , Reineix, A. , Jecko, B. , 1992. Electr. Lett. 28 (6), 539–541.
  20. Marty, M. , Sersa, G. , Garbay, J. R. , Gehl, J. , Collins, C. G. , Snoj, M. , Billard, V. , Geertsen,P. F. , Larkin, J. O. , Miklavcic, D. , Pavlovic, I. , Paulin-Kosir, S. M. , Cemazar, M. , Morsli,N. , Rudolf, Z. , Robert, C. , O'Sullivan, G. C. , Mir, L. M. , 2006. Ejc Suppl. 4 (11), 3–13.
  21. Mir, L. M. , Glass, L. F. , Sersa, G. , Teissie, J. ,Domenge, C. , Miklavcic, D. , Jaroszeski, M. J. Orlowski, S. , Reintgen, D. S. , Rudolf, Z. , Belehradek, M. , Gilbert, R. , Rols, M. P. , Belehradek, J. , Bachaud, J. M. , DeConti, R. , Stabuc, B. , Cemazar, M. , Coninx, P. , Heller, R. , 1998. Br. J. Cancer 77 (12), 2336–2342.
  22. Grosse, C. , and H. P. Schwan. 1992. Cellular membrane potentials induced by alternating fields. Biophys. J. 63:1632–1642.
  23. Kotnik, T. , T. Slivnik, and D. Miklavc?ic?. 1998. Time course of transmembrane voltage induced by time-varying electric fields: a method for theoretical analysis and its application. Bioelectrochem. Bioenerg. 45:3–16.
  24. Kotnik, T. , and D. Miklavc?ic?. 2000. Second-order model of membraneelectric field induced by alternating electric fields. IEEE Trans. Biomed. Eng. 47:1074–1081.
  25. Kotnik, T. , and D. Miklavc?ic?. 2000. Theoreticalevaluation of the distributed power dissipation in biological cells exposed to electric fields. Bioelectromagnetics. 21:385–394.
  26. Foster, K. R. 2000. Thermal and non thermal mechanisms of interaction of radio-frequency energy with biological systems. IEEE Trans. Plasma Sci. 28:15–23.
  27. Morse, P. M. , and H. Feshbach. 1953. Methods of Theoretical Physics. McGraw-Hill, New York, NY
  28. Clair Dalmay, julien villemejane, at el: a microfloudic bio chip for the nanoporation of leaving cell. Biosensor and Bioelectronics . 26,12(2011) pp 4649-4655.
  29. A Theoretical Study of Single-Cell electroporation in a Microchannel,Saeid Movahed • Dongqing Li, DOI 10. 1007/s00232-012-9515-6
Index Terms

Computer Science
Information Sciences

Keywords

Picoseconds Pulsed Electric Field (psPEF) bio Micro chip Dense Osteoblast cell Intra- organelle nanoporation.