CFP last date
20 September 2024
Reseach Article

Modified Inverse Rayleigh Distribution

by Muhammad Shuaib Khan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 87 - Number 13
Year of Publication: 2014
Authors: Muhammad Shuaib Khan
10.5120/15270-3868

Muhammad Shuaib Khan . Modified Inverse Rayleigh Distribution. International Journal of Computer Applications. 87, 13 ( February 2014), 28-33. DOI=10.5120/15270-3868

@article{ 10.5120/15270-3868,
author = { Muhammad Shuaib Khan },
title = { Modified Inverse Rayleigh Distribution },
journal = { International Journal of Computer Applications },
issue_date = { February 2014 },
volume = { 87 },
number = { 13 },
month = { February },
year = { 2014 },
issn = { 0975-8887 },
pages = { 28-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume87/number13/15270-3868/ },
doi = { 10.5120/15270-3868 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:05:50.700720+05:30
%A Muhammad Shuaib Khan
%T Modified Inverse Rayleigh Distribution
%J International Journal of Computer Applications
%@ 0975-8887
%V 87
%N 13
%P 28-33
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A two parameter generalization of the Inverse Rayleigh distribution capable of modeling bathtub hazard rate function is defined and studied with application to reliability data. A comprehensive account of the mathematical properties of the modified Inverse Rayleigh distribution including estimation and simulation with its reliability behavior are discussed. An application is presented to illustrate the proposed distribution.

References
  1. Ammar M. Sarhan and Mazen Zaindin. (2009). Modified Weibull distribution, Applied Sciences, 11, 123-136.
  2. Akinsete, A. , Famoye, F. and Lee, C. (2008). The beta-Pareto distribution. Statistics 42, 547-563.
  3. Bonferroni C. E. (1930). Elmenti di statistica generale. Libreria Seber, Firenze
  4. Gauss M. Cordeiro, Antonio Eduardo Gomes , Cibele Queiroz da-Silva, Edwin M. M. Ortega, The beta exponentiated Weibull distribution, Journal of Statistical Computation and Simulation. 83,1, 2013, 114–138.
  5. Gharraph, M. K. (1993). Comparison of Estimators of Location Measures of an Inverse Rayleigh Distribution. The Egyptian Statistical Journal. 37, 295-309.
  6. J. F. Kenney and E. S. Keeping. Mathematics of Statistics. Princeton, NJ. (1962)
  7. Khan, M. S, King Robert, 2012 Modified Inverse Weibull Distribution, J. Stat. Appl. Pro. 1, No. 2, 115-132.
  8. Khan, M. S, Pasha, G. R and Pasha, A. H. (2008). Theoretical analysis of Inverse Weibull distribution. WSEAS Transactions on Mathematics, 7(2), 30-38.
  9. Lorenz, M. O. (1905). "Methods of measuring the concentration of wealth". The American Statistical Association, Vol. 9, No. 70) 9 (70): 209–219.
  10. Mohsin and Shahbaz (2005). Comparison of Negative Moment Estimator with Maximum Likelihood Estimator of Inverse Rayleigh Distribution, PJSOR 2005, Vol. 1: 45-48
  11. Mukarjee, S. P. and Maitim, S. S. (1996). A Percentile Estimator of the Inverse Rayleigh Parameter. IAPQR Transactions, 21, 63-65.
  12. Treyer, V. N. (1964). Doklady Acad, Nauk, Belorus, U. S. S. R.
  13. Voda, V. Gh. (1972). On the Inverse Rayleigh Random Variable, Pep. Statist. App. Res. , JUSE, 19, 13-21
  14. Voda, V. G. (1975). Note on the truncated Rayleigh variate. Revista Colombiana de Matematicas, 9, 1-7.
  15. Voda, V. G. (1976). Inferential procedures on a generalized Rayleigh variate I. Applied Mathematics, 21, 395-412.
Index Terms

Computer Science
Information Sciences

Keywords

Reliability functions moment estimation moment generating function order statistics maximum likelihood estimation