Abstract

Analog-to-digital converters (ADCs) are required in almost all communication and signal processing applications. This paper describes a 1.5-V, 10-bit, 200-Msample/s pipeline analog-to-digital converter in 0.18-µm CMOS technology. The entire circuit architecture is built with a modular approach consisting of identical units organized into an easily expandable pipeline chain. The converter uses ten stage pipelined architecture with fully differential analog circuits, with a full-scale sinusoidal input at 10 MHz. A special focus is made on pipelined ADC for its superior performance in terms of speed and resolution.

References

- Dwight U. Thomson and Bruce A. Wooley, "A 15-b pipelined CMOS floating point
A 1. 5-V, 10-bit, 200-MS/s CMOS Pipeline Analog-to-Digital Converter

- Timothy M. Hancock and Scott M. Pernia and Adam C. Zeeb, " A Digitally corrected 1. 5 bits/stage low-power 80 Ms/s 10-bits pipelined ADC, " EECS 589-02 University of Minchigan Tech. rep., December 2002.
- B. Murmann and B. E. Boser, " A 12b 75MS/s pipelined ADC using open-loop residue amplification," ISSCC Dig. Tech. Papers, pp. 328-329, Feb. 2003

Index Terms
Computer Science
Circuits And Systems

Keywords
Analog-to-Digital converters (ADCs) Pipeline High Speed