Abstract

The objective of this paper is to implement and evaluate the effectiveness of scaling functions and wavelet transformations in the field of image compression and decompression. The performance parameters like Peak Signal to Noise Ratio (PSNR), Mean Squared Error (MSE), and Compression Ratio (CR), SNR (Signal to Noise Ratio) are calculated based on the Matlab source code. The implemented model provides better PSNR, MSE, CR, SNR than the Basic 2D Discrete Cosine Transform.

References

- Adative Wavelet rendering by Ryan S. Overbeck, Columbia University, Craig Donnery Columbia University. Z. Ravi Ramamoorthi, University of California, Berkeley.
Image Compression based on Scaling Functions And Wavelet Transformations

- ACEEE Int. J. on information Technology, Vol. 01. No. 02, sep2011, Image Compression using WDR & ASWDR Techniques with different wavelet Codecs By S. P. Raja, Dr. A. Suruliandi, Manonmaniam sundaranar University.

Index Terms

Computer Science

Image Processing

Keywords

Abstract Introduction Basic Construction of Scaling Concepts Daubechies Wavelets Wavelet Transformation Results and Discussion

Error Metrics

Conclusion
References.