Abstract

The most methods used for solving multi objective optimization problems (MOPs) are based on the Pareto-optimal frontier, but this approach will become questionable when the number of objectives grows. This paper presents an approach for solving MOPs using PROMETHEE method (Preference Ranking Organization methods for Enrichment Evaluation). In this paper the optimal solution of MOPs is built base on minimizing the preference of positive ideal solution and maximizing the preference over negative ideal solution. Thus, a k-dimensional objective space is reduced to a two-dimensional space. The concept of membership function of fuzzy set theory is used to represent the satisfaction level for both criteria and a max-min operator is used for solving the transformed problem. Finally a numerical example is illustrated.

References

- J. Horn, 1997, Multi criterion decision making, Thomas B?ck, David Fogel, Zbigniew
Extension of PROMETHEE Method for Solving Multi-Objective Optimization Problems

Michalewicz (Eds.), Handbook of Evolutionary Computation, IOP Publishing Ltd. And Oxford
University Press, New York, USA, pp. F1.9:1-F1.9:15.
- C. A. C. Coello, 2000. Handling preferences in evolutionary multi objective optimization:
- J. p. Brans, Ph. Vincke, B. Mareschal, "How to select and how to rank projects: The
 PROMETHEE method", European journal of operational research 24(1986) 228-238.
- M. behzadian, R. b. kazemzadeh, A. Albadvi, M. Aghdasi, "PROMETHEE: a
 comprehensive literature review on methodologies applications", European journal of
- R. O. Parreiras, J. A. Vasconcelos, "A multiplicative version of PROMETHEE ?
 applied to multi objective optimization problems", European journal of operational
- R. O. Parreiras, J. H. R. D. Maciel, J. A. Vasconcelos, "The a posteriori decision
 in multiobjective optimization problems with smarts, PROMETHEE II , and a fuzzy
- J. M. Martel, B. Aouni, "Incorporating the decision-makers preferences in the goal
 1121–1132.
- M. Diaby, J. M. Martel, Preference structure modeling for multi-objective decision
 making: A goal-programming approach, Journal of Multi-Criteria Decision Analysis 6
- W. Jianjun and Y. Delli, "an AHP/PROMETHEE based method of selecting
- M. Dagdeviren, Decision making in equipment selection: An integrated approach
- J. J. Wang, C. M. Wei, D. L. Yang, "Decision method for vendor selection based
 on AHP/PROMETHEE GAIA", Dalian ligong Dauxe xuebao, Journal of Dalian university of
- C. Macharis, j. Springael, K. D. Brucker, A. Verbeke, "PROMETHEE and AHP: The
 design of operational synergies in multi criteria analysis", European journal of
- M. Gournas, V. Lygerou, "An extension of the PROMETHEE method for decision
 making in fuzzy environment: Ranking of alternative energy exploitation projects",
- J. Geldermann, T. Spengler, O. Rentz, "Fuzzy outranking for environmental
 assessment. Case study: Iron and steel making industry", Fuzzy sets and systems 115
- J. f. Le Teno, B. Mareschal, "An interval version of PROMETHEE for the
 comparison of building products' and sales with ill-defined data on environmental
- Ch. Kao, "Weight determination for consistently ranking alternatives in multiple
- Y. M. Wang, Y. Luo, "Integration of correlations with standard deviations for
determining attribute weights in multiple attribute decision making", Mathematical and

Index Terms

Computer Science

Algorithms

Keywords

Multiobjective Optimization Problem (MOP) PROMETHEE method Preference Fuzzy

function

set theory.