Abstract

The present paper introduces destructive neural network learning techniques and presents the analysis of the convergence rate of the error in a neural network with and without threshold. Also, a constructive algorithm for rule extraction based on a trained neural network using Gene Expression Programming (GEP) is proposed. The rules are not an easy task due to the large number of examples entered to the input layer. Thus, we can use GEP to encode the rules in the form of logic expression. Finally, the proposed model is evaluated on different public-domain datasets and compared with standard learning models from WEKA, and then the results accentuate that the set of rules extraction from the proposed method is more accurate and brief compared with those achieved by the other models.

References

Destructive Learning Analysis and Constructive Algorithm for Rule Extraction based on a Trained Neural Network using Gene Expression Programming

- Thrun, S. e. a., 1991 The MONK's problems: A performance comparison of different learning algorithms, Pittsburgh, 91-197.
- Lőfström, T. and Odqvist, P. 2004 RULE EXTRACTION IN DATA MINING - FROM A META LEARNING PERSPECTIVE.

- OlcayB., 2002 Extracting decision tree from trained neural networks, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 456-461.
Destructive Learning Analysis and Constructive Algorithm for Rule Extraction based on a Trained Neural Network using Gene Expression Programming

- Cong, G. et al., 2005 Mining Top-k Covering Rule Groups for Gene Expression Data, Proc. ACM SIGMOD Int's Conf. Management of Data (SIGMOD '05).
- Shang, X. Q. , Zhao, Q. and Li, Z. H. 2009 Mining High-Correlation Association Rules for Inferring Gene Regulation Networks, Proc. 11th Int's Conf. Data Warehousing and Knowledge Discovery (DaWaK '09), pages 244-255.
- Marghny, H. M, 2011 Rules extraction from constructively trained neural networks
based on genetic algorithms

Index Terms

Computer Science
Artificial Intelligence

Keywords

Neural Network
Destructive Learning
Constructive Learning
Pruning
Rule Extraction
Classification Rules

Gene Expression Programming.