CFP last date
20 March 2024
Reseach Article

Low-Thrust Orbit Transfer Optimization using a Combined Method

by R. Esmaelzadeh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 89 - Number 4
Year of Publication: 2014
Authors: R. Esmaelzadeh
10.5120/15491-4284

R. Esmaelzadeh . Low-Thrust Orbit Transfer Optimization using a Combined Method. International Journal of Computer Applications. 89, 4 ( March 2014), 20-24. DOI=10.5120/15491-4284

@article{ 10.5120/15491-4284,
author = { R. Esmaelzadeh },
title = { Low-Thrust Orbit Transfer Optimization using a Combined Method },
journal = { International Journal of Computer Applications },
issue_date = { March 2014 },
volume = { 89 },
number = { 4 },
month = { March },
year = { 2014 },
issn = { 0975-8887 },
pages = { 20-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume89/number4/15491-4284/ },
doi = { 10.5120/15491-4284 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:08:23.513422+05:30
%A R. Esmaelzadeh
%T Low-Thrust Orbit Transfer Optimization using a Combined Method
%J International Journal of Computer Applications
%@ 0975-8887
%V 89
%N 4
%P 20-24
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A genetic algorithm is used together with calculus of variations to optimize an interplanetary trajectory for the Bryson-Ho Earth-to-Mars orbit transfer problem. The global search properties of genetic algorithm combine with the local search capabilities of calculus of variations to produce solutions that are superior to those generated with the calculus of variations alone, and these solutions require less user interaction than previously possible. The genetic algorithm is not hampered by ill-behaved gradients and is relatively insensitive to problems with a small radius of convergence, allowing it to optimize trajectories for which solutions had not yet been obtained. The use of the calculus of variations within the genetic algorithm optimization routine increased the precision of the final solution to levels uncommon for a genetic algorithm.

References
  1. Wuerl, A. , Carin, T. , Barden, E. 2003. Genetic Algorithm and Calculus of Variations-Based Trajectory Optimization Technique, Journal of Spacecraft and Rockets, V. 40, No. 6.
  2. Dewell, L. , Menon, P. 1999. Low-Thrust Orbit Transfer Optimization Using Genetic Search, AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, Reston, USA.
  3. Betts, J. T. 1998. Survey of Numerical Methods for Trajectory Optimization, Journal of Guidance, Control and Dynamics, Vol. 21, No. 2.
  4. Beveridge, G. S. , and Schechter, R. S. 1970. Optimization: Theory and Practice, New York, McGraw-Hill.
  5. Bulirsch, R. , Montrone, F. , and Pesche, H. 1996. Abort Landing in the presence of a Windshear as a Minimax Optimal Control Problem, Part 2: multiple Shooting and Homotopy, Journal of Optimization Theory and Applications, Vol. 33, No. 6.
  6. Reeves, C. R. 1996. Heuristic search methods: A review, In D. Johnson and F. O'Brien (1996) Operational Research: Keynote Papers, Operational Research Society, Birmingham, UK.
  7. Gage, P. J. , Braun, R. D. , and Kroo, I. M. 1995. Interplanetary Trajectory Optimization Using a Genetic Algorithm, Journal of Astronautical Sciences, Vol. 43, No. 1.
  8. Carter, M. T. , and Vadali, S. R. 1995. Parameter Optimization Using Adaptive Bound Genetic Algorithms, American Astronomical Society, AAS Paper 95-140.
  9. Pinon, E. , III, and Fowler, W. T. 1995. Lunar Launch Trajectory Optimization Using a Genetic Algorithm, American Astronomical Society, AAS Paper 95-142.
  10. Bryson, A. , and Ho, Y. 1975. Applied Optimal Control, Revised Printing, Hemisphere, New York.
  11. Aerospace Trajectory Optimization Using Direct Transcription and Collocation, http://www. cdeagle. cnchost. com/ommatlab/dto_matlab. pdf
  12. Bryson, A. E. 1998. Dynamic Optimization, Prentice Hall.
  13. Rauwolf, G. A, Coverstone-Carroll, V. L. 1996. Near-Optimal Low-Thrust Orbit Transfers Generated by a Genetic Algorithm, Journal of Spacecraft and Rockets, Vol. 33, No. 6.
  14. Bate, R. R. , Mueller, D. D. , and White, J. E. 1975. Fundamentals of Astrodynamics, 1st ed. , Dover, New York.
  15. Ansari, N. 1997. Computational Intelligence for Optimization, Kluver Academic Publishers.
  16. Holland, J. 1975. Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.
  17. Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley.
  18. Hsiao J. Hui-wen, Literature Review–Genetic Algorithms, http://www. homepages. inf. ed. ac. uk/s0231692/resume/GeneticAlgorithmNew. pdf.
  19. Renders, J-M. , and Flasse, S. P. 1996. Hybrid Methods Using Genetic Algorithms for Global Optimization, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 26, No. 2, 243-258.
  20. Carin, T. P. , Bishop, R. H. , Fowler, W. T. , and Rock, K. 1998. Interplanetary Flyby Mission Optimization Using a Hybrid Global/Local Search Method, Journal of Spacecraft and Rockets, Vol. 37, No. 3.
  21. Hartmann, J. W. , Coverstone-Carroll, V. L. , Williams, S. N. 1998. Optimal Interplanetary Spacecraft Trajectories via a Pareto Genetic Algorithm, Journal of Astronautical Sciences, Vol. 46, No. 3.
  22. Hoffmeister F. , Back T. 1991. Genetic algorithms and evolution strategies: similarities and differences, In: Schefel H. P. , Manner R. (eds. ) Parallel Problem Solving from Nature, Proceedings of 1st Workshop, Dortmund, Germany.
  23. Perhinschi, M. G. 1997. A Modified Genetic Algorithm for the Design of Autonomous Helicopter Control System, Proceedings of the AIAA Guidance, Navigation, and control Conference, New Orleans, LA, USA.
  24. Michalewicz, Z. , Deb, K. , Schmidt, M. , Stidsen, TH. 1999. Evolutionary Algorithms for Engineering Applications, In: Miettinen, K. , and et al. (edit. ), Evolutionary Algorithms in Engineering and Computer Science, Wiley.
Index Terms

Computer Science
Information Sciences

Keywords

Trajectory optimization Genetic algorithms Hybrid methods Orbit transfer.