CFP last date
20 September 2024
Reseach Article

Optimal Control with an Isoperimetric Constraint Applied to Cancer Immunotherapy

by Amine Hamdache, Ilias Elmouki, Smahane Saadi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 94 - Number 15
Year of Publication: 2014
Authors: Amine Hamdache, Ilias Elmouki, Smahane Saadi
10.5120/16421-6073

Amine Hamdache, Ilias Elmouki, Smahane Saadi . Optimal Control with an Isoperimetric Constraint Applied to Cancer Immunotherapy. International Journal of Computer Applications. 94, 15 ( May 2014), 31-37. DOI=10.5120/16421-6073

@article{ 10.5120/16421-6073,
author = { Amine Hamdache, Ilias Elmouki, Smahane Saadi },
title = { Optimal Control with an Isoperimetric Constraint Applied to Cancer Immunotherapy },
journal = { International Journal of Computer Applications },
issue_date = { May 2014 },
volume = { 94 },
number = { 15 },
month = { May },
year = { 2014 },
issn = { 0975-8887 },
pages = { 31-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume94/number15/16421-6073/ },
doi = { 10.5120/16421-6073 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:17:46.264307+05:30
%A Amine Hamdache
%A Ilias Elmouki
%A Smahane Saadi
%T Optimal Control with an Isoperimetric Constraint Applied to Cancer Immunotherapy
%J International Journal of Computer Applications
%@ 0975-8887
%V 94
%N 15
%P 31-37
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a therapeutic strategy for the treatment of cancer using immunotherapy that aims to maximize the active immune response and to minimize the tumor cells level while reducing drugs side effects and treatment cost is proposed. Assume that the treatment amount that can be administered to a potential patient during therapy period is known precisely, an ODE model with control acting as an immunotherapy agent is presented and an optimal control problem is formulated to include an isoperimetric constraint on the immunotherapy treatment. The Pontryagin's maximum principle is used to characterize the optimal control taking into account the fixed isoperimetric constraint. The optimality system is derived and solved numerically using an adapted iterative method with a Runge-Kutta fourth order scheme and secant method routine.

References
  1. R. Swanson, Carly Bridge, J. D. Murray, Ellsworth C. Alvord Jr: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. Journal of the Neurological Sciences 216, 110 (2003).
  2. Svetlana, Bunimovich-Mendrazitsky, Eliezer Shochat, Lewi Stone: Mathematical Model of BCG Immunotherapy in Superficial Bladder Cancer. Bulletin of Mathematical Biology, DOI 10. 1007/s11538-007-9195-z (2007).
  3. Celestia S. Higano, Paul F. Schellhammer, Eric J. Small, Patrick A. Burch, John Nemunaitis, Lianng Yuh, Nicole Provost, Mark W. Frohlich, Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer Volume 115, Issue 16, pages 36703679 (2009).
  4. Blattman JN, Greenberg PD. Cancer immunotherapy: A treatment for the masses. Science 305:200-205, (2004).
  5. L. G. de Pillis, W. Gu, A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol. 238 (4) 841, (2006).
  6. Castiglione F, Piccoli B. Cancer immunotherapy, mathematical modeling and optimal control. J Theor Biol; 247(4):723, (2007).
  7. D. Kirschner and J. C. Panetta, Modeling Immunotherapy of the Tumor-Immune Interaction. J. Math. Biol. 37, 235-252 (1998).
  8. Cliburn Chan, Andrew George, and Jaroslav Stark, T Cell Sensitivity and Specificity, Kinetic Proofreading Revisited. Discrete and Continuous Dynamical Systems - Series B, 3, 343-360 (2003).
  9. Burden, T. , Ernstberger, J. , Renee Fister, K. Optimal control applied to immunotherapy. Discrete Contin. Dyn. S. B 4 (1), 135146, (2004).
  10. Kamien, M. I. and N. L. Schwartz, Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, 2nd ed, New York, Elsevier Science, (1991).
  11. Pontryagin, L. S. , Boltyanskii, V. G. , Gamkrelidze, R. V. , and Mishchenko, E. F. , The Mathematical Theory of Optimal Processes, Vol4, Gordon and Breach Science Publishers (1986).
  12. W. H. Fleming, R. W. Rishel. Deterministic and Stochastic Optimal Control, Springer Verlag, New York (1975).
  13. D. L. Lukes, Differential Equations: Classical To Controlled, vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA (1982).
  14. S. Lenhart, T. Workman: Optimal Control Applied to Biological Models. Chapman and Hall/CRC Mathematical and Com-putational Biology Series (2007).
  15. Michael McAsey, Libin Mou, Weimin Han: Convergence of the Forward-Backward Sweep Method in Optimal Control.
  16. E. Ward Cheney, David R. Kincaid, Numerical Mathematics and Computing, Thomson, Belmont, California (2004).
  17. R. M. Neilan and S. Lenhart. An introduction to optimal control with an application in disease modeling. In modeling paradigms and analysis of disease transmission models, volume 75 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci. Amer. Math. Soc. , Providence, RI, (2010).
Index Terms

Computer Science
Information Sciences

Keywords

Interleukin-2 Isoperimetric constraint Pontryagin's maximum principle Runge-Kutta fourth order scheme Secant method routine