CFP last date
21 October 2024
Reseach Article

Diabolo Optical Antenna for Enhancing and Confining Electric Field Resonance

by Mohamed Nadhim Abbas, Hadi K. Shamkhi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 97 - Number 23
Year of Publication: 2014
Authors: Mohamed Nadhim Abbas, Hadi K. Shamkhi
10.5120/17324-7696

Mohamed Nadhim Abbas, Hadi K. Shamkhi . Diabolo Optical Antenna for Enhancing and Confining Electric Field Resonance. International Journal of Computer Applications. 97, 23 ( July 2014), 29-33. DOI=10.5120/17324-7696

@article{ 10.5120/17324-7696,
author = { Mohamed Nadhim Abbas, Hadi K. Shamkhi },
title = { Diabolo Optical Antenna for Enhancing and Confining Electric Field Resonance },
journal = { International Journal of Computer Applications },
issue_date = { July 2014 },
volume = { 97 },
number = { 23 },
month = { July },
year = { 2014 },
issn = { 0975-8887 },
pages = { 29-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume97/number23/17324-7696/ },
doi = { 10.5120/17324-7696 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:24:55.795196+05:30
%A Mohamed Nadhim Abbas
%A Hadi K. Shamkhi
%T Diabolo Optical Antenna for Enhancing and Confining Electric Field Resonance
%J International Journal of Computer Applications
%@ 0975-8887
%V 97
%N 23
%P 29-33
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the electric resonance characteristics of narrow waist diabolo shape gold metal bar nanoantenna have been investigated. These metal nanostructures induce surface plasmon polration (SPP) and localized surface plasmon resonance (LSPR) leading to enhance the absorption and the scattering cross sections characteristics of the antenna. Investigation is done using 3D model Finite Element Method (FEM) numerical simulations and dipole oscillator model. From simulation work, it is found that the relationship between the antenna length and the resonance wavelength is approximatly linear. Also, it is found that as the diabolo antenna waist get narrower, the power dissipation decreases and slightly the resonance wavelength shifted to the higher values. The investigation shows that the electric field amplified in the extremities of the diabolo antenna while the magnetic field ?90?^° phase shifted from the electric field and amplified in the waist (middle) of the antenna.

References
  1. D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit", Macmillan Publishers Limited, 2010, Nature Photonics.
  2. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, " Diabolo Nanoantenna for Enhancing and Confining the Magnetic Optical Field", ACS Publications, 2011, nano letters.
  3. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, "Surface enhanced infrared spectroscopy using gold nanoantennas" , 2010, Phys. Stat. Solidi.
  4. L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J. L. Bijeon, P. M. Adam, and P. Royer, "Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement" , 2006, Chem. Phys. Lett.
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors" , 2008, Nat. Mater.
  6. P. Bharadwaj, P. Anger, and L. Novotny, "Nanoplasmonic enhancement of single-molecule fluorescence", 2007, Nnotechnology.
  7. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures", 2006, Nano Lett.
  8. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas" , 2006, Nano Lett.
  9. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," 2010, Nat. Mater.
  10. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy", 2005, Phys. Rev.
  11. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver Nanowires as Surface Plasmon Resonators", 2005, Phys. Lett.
  12. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, "Plasmonic Laser Antennas and Related Devices", 2008, IEEE J. Sel. Topics Quantum Electron.
  13. Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and Mu Wang, " Plasmonic antenna array at optical frequency made by nanoapertures", 2008, Appl. Phys. Lett.
  14. A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings", 2008, Phys. Rev. Lett.
  15. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, "Electrically Connected Resonant Optical Antennas", 2012, Nano Lett
  16. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, " Optical properties of coupled metallic nanorods for field-enhanced spectroscopy", 2005, Phys. Rev.
  17. W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A. L. Baudrion, and P. Royer, "Understanding near/far-field engineering of optical dimer antennas through geometry modification", 2009, Optics Express
  18. E. D. Palik, Handbook of Optical constants of solids (Academic press, 1998).
  19. Z. Pan, J. Guo, "Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas", 2013, Opt. Express.
  20. M. A. Kats, N. Yu, P. Genevet, Z. Gaburro, and F. Capasso, "Effect of radiation damping on the spectral response of plasmonic components" , 2011, Opt. Express.
  21. B. M. Ross and L. P. Lee, "Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles", 2009, Opt. Lett.
  22. J. D. Jackson, Classical Electrodynamics 3th ed. (Wiley, 1998).
  23. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, 1986).
Index Terms

Computer Science
Information Sciences

Keywords

Plasmonics Surface plasmon polration Localized surface plasmon resonance Dipole oscillator model Absorption cross section Scattering cross section.