Abstract

An intention of MapReduce Sets for Binning expressions analysis has to suggest criteria how Binning expressions in Binning data can be defined in a meaningful way and how they should be compared. Similitude based MapReduce Sets for Binning Expression Analysis and MapReduce Sets for Assignment is expected to adhere to fundamental principles of the scientific Binning process that are expressiveness of Binning models and reproducibility of their Binning inference. Binning expressions are assumed to be elements of a Binning expression space or Conjecture class and Binning data provide "information" which of these Binning expressions should be used to interpret the Binning data. An inference Binning algorithm constructs the mapping between Binning data and Binning expressions, in particular by a Binning cost minimization process. Fluctuations in the Binning data often limit the Binning precision, which we can achieve to uniquely identify a single Binning expression as interpretation of the Binning data. We advocate an information theoretic perspective on Binning expression analysis to resolve this dilemma where the tradeoff between Binning informativeness of statistical inference Binning and their Binning stability is mirrored in the information-theoretic Binning optimum of high Binning information rate and zero communication expression error. The inference Binning algorithm is considered as an outlier object Binning path, which naturally limits the resolution of the Binning expression space given the uncertainty
of the Binning data.

References

Index Terms

Computer Science

Information Sciences
Keywords
MapReduce Binning expressions kernel function.