Abstract

In this paper an improved method for reversible watermarking is proposed. This scheme is the combination of entropy masking and histogram. One first contribution is entropy masking which has three techniques. From three of them dwt is used for the watermarking. Entropy masking is also a human visual system’s characteristic, which rarely has been addressed in visual models. The second contribution is a histogram shifting. This will show the histogram of the different images. In that way the watermark embedded and extractor remain synchronized for message extraction and image reconstruction. In this paper a universal entropy masking model is proposed for watermarking embedding algorithm to keep the balance between watermarks’ imperceptibility and also its robustness. Also the results are concluded from the experiments that a suitable domain of entropy calculation will result in optimal watermarking performance. For the implementation of this proposed work, the Matlab software is used under image processing toolbox.
Watermarking Based on Invariant Image Classification and Dynamic Histogram Shifting,
IEEE transactions on information forensics and security, vol. 8, no. 1, Jan 2013.
- Youngseok Lee and Jongweon Kim. "Histogram Rotation-Based Image
Vol. 6, No. 2, April, 2012.
- Rakesh Ahuja S. S. Bedi Himanshu Agarwal, "A Survey of Digital Watermarking
2, issue 1, pp. 52-59, Jan. 2012.
- D. Coltuc, "Improved embedding for prediction-based reversible
2011.
- W. Pan, G. Coatrieux, N. Cuppens, F. Cuppens, and C. Roux, "An additive and
lossless watermarking method based on invariant image approximation and Haar wavelet
method using optimal histogram pair shifting based on prediction and sorting," KSII,
- L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, "Reversible image
- M. A. Akhaee and Bulent Sankur, "Robust Scaling-Based Image Watermarking
Using Maximum-Likelihood Decoder With Optimum Strength Factor," IEEE Trans. on
- G. Coatrieux, C. Le Guillou, J. -M. Cauvin, and C. Roux, "Reversible
- V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. -Q. Shi, "Reversible
- C. C. Lin, W. L. Tai, and C. C. Chang, "Multilevel reversible data hiding based
- D. M. Thodi and J. J. Rodriguez, "Expansion embedding techniques for reversible
watermarking applications in healthcare," in Proc. IEEE EMBC Conf., New York, 2006,
pp. 4691–4694.
- F. Bao, R. H. Deng, B. C. Ooi, and Y. Yang, "Tailored reversible watermarking

Index Terms

Computer Science
Image Processing

Keywords

Digital Watermarking
Entropy
Entropy Masking
Histogram Shifting
PSNR (peak signal to noise ratio).