Abstract

The growth of bioinformatics and computational biology industry, multiple sequence alignment (MSA) applications have become an important emerging workload. In spite of the large amount of recent attention given to the MSA software design, there has been little quantitative understanding of the performance of such applications on modern microprocessors and systems. In this paper we try to analyze performance and characteristics of MSA software from
Multiple Sequence Alignments with Parallel Computing

the perspective of multicore machines. We use several popular MSA programs employing a
correction of multiple sequence alignments, Bioinformatics, Vol. 19, No. 9.
2(11), 2010, 6361-6370.
Thompson JD, Poch O. (2006). Multiple sequence alignment as a workbench for
molecular systems biology, Curr Bioinformatics, 1:95-104.
local biological sequence alignment in a cluster of workstations, J Parallel Distrib Comput,
67:170-185.
2:452-455.
Kleinjung J, Douglas N, Heringa J. (2002). Parallelized multiple alignment, Bioinformatics,
18:1270-1271.
and multiple sequence alignment using parallel processors. BMC Bioinformatics 2004,
5:128.
computing, Bioinformatics, 19:1585-1586.
parallel Clustal W, HT Clustal, and Multiclusters. In White papers. Silicon Graphics,
Mountain View, CA.
Zafalon, F. D. Geraldo. Et al. (2013). "Improvements in the score matrix calculation
method using parallel score estimating algorithm", Journal of Biophysical Chemistry,
Vol. 4, No. 2, 47-51.
Zhu, X. Li, K. et al. (2011). "A Data Parallel Strategy for Aligning Multiple Biological Sequences
on Homogeneous Multiprocessor Platform", Sixth Annual China Grid Conference.
Pipeline Approach", BIJIT-BVICAM's International Journal of Information Technology
Saeed, F. et al. (2009). "A Domain Decomposition Strategy for Alignment of Multiple
Bioinform, 2:181-194.

References

- J. D. Thompson, J. e. Thierry, O. Poch. (2003). RASCAL: rapid scanning and
- Thompson JD, Poch O. (2006). Multiple sequence alignment as a workbench for
- Kleinjung J, Douglas N, Heringa J. (2002). Parallelized multiple alignment, Bioinformatics,
- Zafalon, F. D. Geraldo. Et al. (2013). "Improvements in the score matrix calculation
- Saeed, F. et al. (2009). "A Domain Decomposition Strategy for Alignment of Multiple
Multiple Sequence Alignments with Parallel Computing

- D. P. Tommaso, M. Orobitg, F. Guirado, F. Cores, T. Espinosa, C. Notredame,

Index Terms

Computer Science
Distributed Computing

Keywords

Multiple Sequence Alignment
Parallelism
Multicore Machines
Parallel Strategies