CFP last date
21 October 2024
Reseach Article

Unique Common Fixed Point Theorem in G- Metric Space via Rational Type Contractive Condition

Published on October 2012 by Manjusha P. Gandhi, Kavita B. Bajpai
International Conference on Benchmarks in Engineering Science and Technology 2012
Foundation of Computer Science USA
ICBEST - Number 4
October 2012
Authors: Manjusha P. Gandhi, Kavita B. Bajpai
658afba9-5e34-466d-9b21-9e44e8f735df

Manjusha P. Gandhi, Kavita B. Bajpai . Unique Common Fixed Point Theorem in G- Metric Space via Rational Type Contractive Condition. International Conference on Benchmarks in Engineering Science and Technology 2012. ICBEST, 4 (October 2012), 20-23.

@article{
author = { Manjusha P. Gandhi, Kavita B. Bajpai },
title = { Unique Common Fixed Point Theorem in G- Metric Space via Rational Type Contractive Condition },
journal = { International Conference on Benchmarks in Engineering Science and Technology 2012 },
issue_date = { October 2012 },
volume = { ICBEST },
number = { 4 },
month = { October },
year = { 2012 },
issn = 0975-8887,
pages = { 20-23 },
numpages = 4,
url = { /proceedings/icbest/number4/8712-1016/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Benchmarks in Engineering Science and Technology 2012
%A Manjusha P. Gandhi
%A Kavita B. Bajpai
%T Unique Common Fixed Point Theorem in G- Metric Space via Rational Type Contractive Condition
%J International Conference on Benchmarks in Engineering Science and Technology 2012
%@ 0975-8887
%V ICBEST
%N 4
%P 20-23
%D 2012
%I International Journal of Computer Applications
Abstract

We prove a unique common fixed point theorem for three mappings in a G-metric space satisfying rational type contractive condition. Our result is generalization of result of P. L. Sanodia et al [6].

References
  1. Chartterjea S. K. , fixed point theorems, C. R. AcadBulgareSci , 25(1972) , 727-730 , MR 48 # 2845.
  2. Ciric L. B. , Generalized contractions and fixed point theorems, Publ. Inst Math (Beograd )( N. S. ) 12(26)1971 , 19 – 26 MR 46 # 8203.
  3. Ciric L. B. A generalization of Banach Contraction Principle ,Proc. AmerMath. Soc. 45 (1974), 267 – 273, MR 50 # 8484.
  4. Hardy G. E. and Roger's T. D. , A generalization of a fixed point theorem of Reich ,Canad, Math. Bull 16 (1973),201-206,MR 48 # 2847.
  5. Kannan R. , Some results on fixed points II, Amer. Math. Monthly 76 (1969),405 – 408. MR 41 # 2487 MR 41 # 2487
  6. Sehgal V. M. , on fixed and periodic points for a class of mappings, J. London Math. Soc. (2) 5 (1972), 571 – 576 . MR 47 # 7722.
  7. Sanodia P. L. , DilipJaiswal , Rajput S. S. , Fixed point theorems in G-metric spaces via rational type contractive condition, International Journal of Mathematical Archive-3(3), 2012, Page: 1292-1296
  8. Sehgal V. M. , on fixed and periodic points for a class of mappings, J. London Math. Soc. (2) 5 (1972), 571 – 576 . MR 47 # 7722.
  9. Singh S. P. , some results on fixed point theorems Yokahama Math. J. 17 (1969) , 61 – 64 MR 41 # 7245 Math. Soc. 37 (1962) 74-79.
  10. Shatanawi W. , Fixed Point Theory for Contractive Mapping Satisfying - maps in G- Metric Spaces ,Fixed Point Theory Appl. Vol. 2010 , Article ID181650, 9 pages (2010).
  11. Mustafa Z. , Sims B. , A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
  12. Mustafa Z. , Sims B, Fixed point theorems for contractive mappings in complete G-metric Spaces, Fixed Point Theory Appl. Vol. 2009, Article ID 917175,10 pages (2009).
Index Terms

Computer Science
Information Sciences

Keywords

Fixed Point complete G- Metric Space G-cauchy Sequence Rational Contraction Mapping