CFP last date
22 July 2024
Reseach Article

FPGA IMPLICATION of the LUT-SR FAMILY for UNIFORM RANDOM NUMBER GENERATION

Published on December 2013 by M. V. Vyawahare, Rita Rawate
National Conference on Innovative Paradigms in Engineering & Technology 2013
Foundation of Computer Science USA
NCIPET2013 - Number 7
December 2013
Authors: M. V. Vyawahare, Rita Rawate
66dd45be-fb01-4700-8852-8bf988ef52fd

M. V. Vyawahare, Rita Rawate . FPGA IMPLICATION of the LUT-SR FAMILY for UNIFORM RANDOM NUMBER GENERATION. National Conference on Innovative Paradigms in Engineering & Technology 2013. NCIPET2013, 7 (December 2013), 19-22.

@article{
author = { M. V. Vyawahare, Rita Rawate },
title = { FPGA IMPLICATION of the LUT-SR FAMILY for UNIFORM RANDOM NUMBER GENERATION },
journal = { National Conference on Innovative Paradigms in Engineering & Technology 2013 },
issue_date = { December 2013 },
volume = { NCIPET2013 },
number = { 7 },
month = { December },
year = { 2013 },
issn = 0975-8887,
pages = { 19-22 },
numpages = 4,
url = { /proceedings/ncipet2013/number7/14742-1428/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Innovative Paradigms in Engineering & Technology 2013
%A M. V. Vyawahare
%A Rita Rawate
%T FPGA IMPLICATION of the LUT-SR FAMILY for UNIFORM RANDOM NUMBER GENERATION
%J National Conference on Innovative Paradigms in Engineering & Technology 2013
%@ 0975-8887
%V NCIPET2013
%N 7
%P 19-22
%D 2013
%I International Journal of Computer Applications
Abstract

Field-programmable gate array (FPGA) optimized random number generators (RNGs) can take advantage of bitwise operations and FPGA-specific features, hence they are more resource-efficient than software-optimized RNGs. This paper describes a type of RNG called a LUT-SR RNG, which takes advantage of bitwise XO R operations and the ability to configure lookup tables (LUTs) into decoders & shift registers of varying lengths. This provides good quality compared to others. The LUT-SR generators is implemented by using VHDL (very high speed integrated circuit hardware description language).

References
  1. D. b. Thomas and w. luk "FPGA optimized uniform random number generators using lut and shift registers "in proc. conf. feild program. logic appl. 2010,pp 77-82.
  2. D. B. Thomas and W. Luk, "High quality uniform random number generation using LUT optimised state-transition matrices," J. VLSI Signal Process. , vol. 47, no. 1, pp. 77–92, 2007.
  3. D. B. Thomas and W. Luk, "FPGA-optimised high-quality uniform random number generators," in Proc. Field Program. Logic Appl. Int. Conf. , 2008, pp. 235–244.
  4. P. L'Ecuyer, "Tables of maximally equidistributed combined LFSR generators," Math. Comput. , vol. 68, no. 225, pp. 261–269, 1999.
  5. D. B. Thomas and W. Luk, "FPGA-optimised uniform random number generators using luts and shift registers," in Proc. Int. Conf. Field Program. Logic Appl. , 2010, pp. 77–82.
  6. M. Matsumoto and T. Nishimura, "Mersenne twister: A 623- dimensionally equidistributed uniform pseudo-random number generator," ACM Trans. Modeling Comput. Simulat. , vol. 8, no. 1, pp. 3–30, Jan. 1998.
  7. M. Saito and M. Matsumoto, "SIMD-oriented fast mersenne twister: A 128-bit pseudorandom number generator," in Monte-Carlo and Quasi-Monte Carlo Methods. New York: Springer-Verlag, 2006, pp. 607–622.
  8. F. Panneton, P. L'Ecuyer, and M. Matsumoto, "Improved long-period generators based on linear recurrences modulo 2," ACM Trans. Math. Software, vol. 32, no. 1, pp. 1–16, 2006.
  9. M. Matsumoto and Y. Kurita, "Twisted GFSR generators II," ACM Trans. Modeling Comput. Simulat. , vol. 4, no. 3, pp. 254–266, 1994.
  10. P. L'Ecuyer and R. Simard. (2007). TestU01 Random Number Test Suite [Online]. Available:http://www. iro. umontreal. ca/?imardr/indexe. html.
  11. F. Panneton, P. L'Ecuyer, and M. Matsumoto, "Improved long-period generators based on linear recurrences modulo 2," ACM Trans. Math. Software, vol. 32, no. 1, pp. 1–16, 2006.
  12. V. Shoup. (1997, Jan. 15). NTL: A Library for Doing Number Theory [Online]. Available: http://www. shoup. net/ntl/
  13. M. Albrecht and G. Bard. (2010). The M4RI Library - Version 20100817 [Online]. Available: http://m4ri. sagemath. org
  14. S. Duplichan. (2003). PPSearch: A Primitive Polynomial Search Program [Online]. Available: http://users2. ev1. net/?sduplichan/ primitivepolynomials/
  15. V. Sriram and D. Kearney, "A high throughput area time efficient pseudo uniform random number generator based on the TT800 algorithm," in Proc. Int. Conf. Field Program. Logic Appl. , 2007, pp. 529–532.
  16. S. Konuma and S. Ichikawa, "Design and evaluation of hardware pseudorandom number generator mt19937," IEICE Trans. Inf. Syst. , vol. 88, no. 12, pp. 2876–2879, 2005.
  17. Y. Li, P. C. J. Jiang, and M. Zhang, "Software/hardware framework for generating parallel long-period random numbers using the well method," in Proc. Int. Conf. Field Program. Logic Appl. , Sep. 2011, pp. 110–115.
Index Terms

Computer Science
Information Sciences

Keywords

Equidistribution Field-programmable Gate Array (fpga) Uniform Random Number Generator (rng).