CFP last date
22 July 2024
Reseach Article

A Numerical Study of a Simple Plankton System with Fluctuating Nutrient Inp

Published on May 2012 by A. Priyadarshi, Sandip Banerjee, S. Gakkhar
National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011
Foundation of Computer Science USA
RTMC - Number 7
May 2012
Authors: A. Priyadarshi, Sandip Banerjee, S. Gakkhar
ae277c87-02a1-4916-ad58-5a1981dc7cab

A. Priyadarshi, Sandip Banerjee, S. Gakkhar . A Numerical Study of a Simple Plankton System with Fluctuating Nutrient Inp. National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011. RTMC, 7 (May 2012), 16-20.

@article{
author = { A. Priyadarshi, Sandip Banerjee, S. Gakkhar },
title = { A Numerical Study of a Simple Plankton System with Fluctuating Nutrient Inp },
journal = { National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011 },
issue_date = { May 2012 },
volume = { RTMC },
number = { 7 },
month = { May },
year = { 2012 },
issn = 0975-8887,
pages = { 16-20 },
numpages = 5,
url = { /proceedings/rtmc/number7/6669-1052/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011
%A A. Priyadarshi
%A Sandip Banerjee
%A S. Gakkhar
%T A Numerical Study of a Simple Plankton System with Fluctuating Nutrient Inp
%J National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011
%@ 0975-8887
%V RTMC
%N 7
%P 16-20
%D 2012
%I International Journal of Computer Applications
Abstract

An aquatic model consists of nutrient, phytoplankton and zooplankton has been developed. The hyperbolic form of mortality for zooplankton has been used. The complex behavior of the system is observed in case of fluctuating input nutrient in the system. The extensive numerical investigation revealed the variations in periodic orbits for some sensitive parameters. The short term oscillations has been also observed. The amplitudes of oscillatory orbits have been found at different nutrient input concentrations.

References
  1. A. M. Edwards and J. Brindley, Oscialltory behavior in a threecomponent plankton population model. Dyn. Stablity Systems 11, no. 2 (1996): 347-370.
  2. A. M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behavior of plankton population models. Bull. Math. Biol. 61, no. 2 (1999): 303-339.
  3. A. M. Edwards, "Adding detritus to a nutrient-phytoplanktonzooplankton model: a dynamical-systems approach" Evolutionary Ecology 8, no. 2 (2001): 389.
  4. A. M. Edwards, and M. A. Bees, "Generic dynamics of a simple plankton population model with a non-integer exponent of closure. " Chaos, Solitons & Fractals 12,no. 2 (2001): 289-300.
  5. G. T. Evans and J. S. Parslow, A model of annual plankton cycles. Bio. Oceanogr. 3, (1985): 327-427.
  6. B. W. Frost, Grazing control of phytoplankton stock in the open sub-arctic Pacific Ocean. . . . Mar. Ecol. Ser. 39, (1987): 49-68.
  7. G. A. Riley, H. Stommel and D. p. Burrpus, Qualitative ecology of the plankton of the Western North Atlantic. Bull. Binghm Oceanogr. Collect. 12, (1994): 1-169.
  8. J. H. Steel, Strututre of Marine Ecosystems. Oxford: Blackbell Scientifics. 1964.
  9. J. H. Steel and B. W. Frost, Strututre of Plankton communities. Phill. Trans. R. Soc. London. B280, 485-534.
  10. J. H. Steel and E. W. Henderson, A simple plankton model. American Naturalist 117, (1981): 676-691.
  11. J. H. Steel and E. W. Henderson, The role of predation in plankton models. Journal of Plankton Res. 14, (1992): 157-172.
  12. A. J. Taylor, Characteristic properties of model for the vertical distributions of phytoplankton under stratification. Ecol. Modelling. 40, (1988): 175-199.
  13. J. S. Wroblewski, An ocean basin scale model of phytoplankton dynamics in the North Atlantic. Solution for the climatological oceanographic condition in May. Global Biogeochem 2, (1988): 199-218.
Index Terms

Computer Science
Information Sciences

Keywords

Plankton System Hopf-bifurcation Periodic Orbits