Abstract

The large usage of multimedia applications on internet and mobiles has increased the demand of compressed data, in order to reduce the requirement of bandwidth and time to transfer the data. So block based method for video compression is getting more importance due to its effectiveness and easy implementation. Fractal video compression follows the property of self-similarity. That's the biggest reason for high compression ratio and also attracts more researchers to work for fractal compression. In block matching motion estimation various algorithm has been proposed having different search pattern and strategies. As the search pattern gives large impact on efficiency of the algorithm. The paper presents an efficient method on fractal video compression, which follows half-way stop technique.
A Novel Search Method for Fractal Video Compression using Block Matching Motion Estimation

References

- Mr. M. Manikandan, Mr. P. Vijayakumar, Mr. N. Ramadass, "Motion Estimation Method for Video Compression – An Overview", IEEE 2006
- Kamel Belloulataa, Shiping Zhub, Zaikuo Wangb, "A Fast Fractal Video Coding Algorithm Using Cross-Hexagon Search for Block Motion Estimation";
- Meiqing Wang, Rong Liu, Choi-Hong Lai, "Adaptive Partition and Hybrid Method in Fractal Video Compression";
- Xuan Jing and Lap-Pui Chau, "An Efficient Three-Step Search Algorithm for Block Motion Estimation";
- R. Li, B. Zeng, and M. L. Liou, "A new three-step search algorithm for block motion estimation";
- Donglai Xu, Chris Bailey and Reza Sotudeh, "An Improved Three-Step Search Block-Matching Algorithm for Low Bit-Rate Video Coding Applications";
- L. M. Po and W. C. Ma, "A novel four-step search algorithm for fast block motion estimation";
- Chun-Ho Cheung and Lai-Man Po, "A Novel Cross-Diamond Search Algorithm for Fast Block Motion Estimation";
- Queen Mary, "A Novel Hexagonal Search Algorithm for Fast Block Matching Motion Estimation";
- Kamel Belloulataa, Shiping Zhub, Jun Tianb, Xiaodong Shengb, "A Novel Cross-Hexagon Search Algorithm for Fast Block Motion Estimation";
- Chun-Ho Cheung and Lai-Man Po, "Novel Cross-Diamond-Hexagonal Search Algorithms for Fast Block Motion Estimation";
- Jo Yew Tham, Surendra Ranganath, Maitreya Ranganath, and Ashraf Ali Kassim, "A Novel Unrestricted Center-Biased Diamond Search Algorithm for Block Motion Estimation";
- Shiping Zhu, Yangshuan Hou, Zaikuo Wang, Kamel Belloulataa, "A Novel Fractal Video Coding Algorithm Using Fast Block-matching Motion Estimation Technology";
- N. A. Koli and M. S. Ali, "A Survey on Fractal Image Compression Key Issues";
- Video Coding And Motion Estimation- Block Based Motion Estimation Algorithms,
A Novel Search Method for Fractal Video Compression using Block Matching Motion Estimation

Version 2 ECE IIT, Kharagpur

- Kamel Bellouataa, Shiping Zhub and Zaikuo Wangb, "A Fast Fractal Video Coding Algorithm Using Cross-Hexagon Search for Block Motion Estimation;"
- K. Belloulata, "Fast fractal coding of subbands using a non-iterative block clustering," 2005
- Zhuhan Jian, Bruce Litow, Olivier de Vel, "An Inference Implementation Based on Extended Weighted Finite Automata," 2001 IEEE
- Marian Mindek, "Finite State Automata and Image Recognition," Technical University of Ostrava, 2004
- Helmut J’urgensena,b, Ludwig Staiger, Hideki Yamasakid, "Finite automata encoding geometric figures," 2007 Elsevier
- Ullrich Hafner, "Image and Video Coding with Weighted Finite Automata," 2003 Elsevier
- Zhuhan Jian, Bruce Litow, "Unification and extension of weighted finite automata applicable to image compression," 2002 Elsevier

Index Terms
Keywords
Bin-tree Partitioning Fractal Video Compression Inter-pixel Similarity Intra-pixel Similarity Quad-tree Partitioning
Weighted Finite Automata