Abstract

The large usage of multimedia applications on internet and mobiles has increased the demand of compressed data, in order to reduce the requirement of bandwidth and time to transfer the data. So block based method for video compression is getting more importance due to its effectiveness and easy implementation. Fractal video compression follows the property of self-similarity. That's the biggest reason for high compression ratio and also attracts more researchers to work for fractal compression. In block matching motion estimation various algorithm has been proposed having different search pattern and strategies. As the search pattern gives large impact on efficiency of the algorithm. The paper presents an efficient method on fractal video compression, which follows half-way stop technique.
A Novel Search Method for Fractal Video Compression using Block Matching Motion Estimation

References

- M. Manikandan, Mr. P. Vijayakumar, Mr. N. Ramadass, "Motion Estimation Method for Video Compression – An Overview", IEEE 2006
- Xuan Jing and Lap-Pui Chau, "An Efficient Three-Step Search Algorithm for Block Motion Estimation"; IEEE Trans. Vol. 6, June 2004
- Ming-gang Liu, Chao-huan Hou, "A Fast Block-Matching Motion Estimation Algorithm Based on Spatial-Temporal Motion Vector Correlation"; International Symposium on intelligent Multimedia, Video and Speech Processing 2001
- Kamel Belloulataa, Shiping Zhub, Jun Tianb, Xiaodong Shenb, "A Novel Cross-Hexagon Search Algorithm for Fast Block Motion Estimation"; IEEE 2011
- Video Coding And Motion Estimation- Block Based Motion Estimation Algorithms,
A Novel Search Method for Fractal Video Compression using Block Matching Motion Estimation

Version 2 ECE IIT, Kharagpur
- JDr. K. Kuppusamy, R. Ilackiya, "Fractal Image Compression & Algorithmic Techniques", 2013
- Miroslav Galabov, "Fractal Image Compression", CompSysTech - 2003
- Kamel Belloulataa, Shiping Zhub and Zaikuo Wangb, "A Fast Fractal Video Coding Algorithm Using Cross-Hexagon Search for Block Motion Estimation"
- K. Belloulata, "Fast fractal coding of subbands using a non-iterative block clustering", 2005
- Jiirgen Albert, Stefan Frank, Ullrich Hafner*, Michael Unger, "Video Compression with Weighted Finite Automata", 1997 IEEE
- Zhuhan Jian, Bruce Litow, Olivier de Vel, "An Inference Implementation Based on Extended Weighted Finite Automata", 2001 IEEE
- Ghim Hwee Ong And Kai Yang, "A Binary Partitioning Approach to Image Compression using Weighted Finite Automata for Large Images", 2006 Elsevier
- Marian Mindek, "Finite State Automata and Image Recognition", Technical University of Ostrava, 2004
- Helmut J‘urgensena,b, Ludwig Staiger, Hideki Yamasakid, "Finite automata encoding geometric figures", 2007 Elsevier
- Ullrich Hafner, "Image and Video Coding with Weighted Finite Automata", 2003 Elsevier
- Zhuhan Jian, Olivier de Velcb, Bruce Litowc, "Unification and extension of weighted finite automata applicable to image compression", 2002 Elsevier

Index Terms
Keywords

Bin-tree Partitioning Fractal Video Compression Inter-pixel Similarity Intra-pixel Similarity Quad-tree Partitioning

Weighted Finite Automata