Call for Paper - July 2022 Edition
IJCA solicits original research papers for the July 2022 Edition. Last date of manuscript submission is June 20, 2022. Read More

A Comparative Analysis of Single Walled CNT Bundle and Multi Walled CNT as Future Global VLSI Interconnects

Print
PDF
Evolution in Networks and Computer Communications
© 2011 by IJCA Journal
Number 2 - Article 6
Year of Publication: 2011
Authors:
Manoj Kumar Majumder
B. K. Kaushik
S. K. Manhas

Manoj Kumar Majumder K Kaushik and S K Manhas. A Comparative Analysis of Single Walled CNT Bundle and Multi Walled CNT as Future Global VLSI Interconnects. IJCA Special Issue on Evolution in Networks and Computer Communications (2):32-38, 2011. Full text available. BibTeX

@article{key:article,
	author = {Manoj Kumar Majumder andB. K. Kaushik and S. K. Manhas},
	title = {A Comparative Analysis of Single Walled CNT Bundle and Multi Walled CNT as Future Global VLSI Interconnects},
	journal = {IJCA Special Issue on Evolution in Networks and Computer Communications},
	year = {2011},
	number = {2},
	pages = {32-38},
	note = {Full text available}
}

Abstract

Carbon based nanomaterials such as metallic single walled carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and graphene have been considered as some of the most promising candiadates for future interconnect technology. In current deep sub-micron level technology, MWNTs have potentially provided an attractive solution over SWNT bundles. This paper presents a comprehensive analysis of propagation delay for both MWNT and SWNT bundles at different interconnect lengths (global) and shows a comparison of area for equivalent number of SWNTs in bundle and shells in MWNTs. It has been observed that irrespective of the type of CNTs, propagation delay increases with interconnect lengths. For same propagation delay performance, the area occupied by SWNT bundle is more than the MWNTs for a specified interconnect length.

Reference

  1. Goel, A. K. 2007. High-speed VLSI Interconnections. Willey-IEEE Press.
  2. Satio, R., Dresselhaus, G., and Dresselhaus, S. 1998. Physical Properties of Carbon Nanotubes. Imperial College Press. London, U. K.
  3. Li, H., Xu, C., Srivastava, N., and Banerjee, K. 2009. Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status and Prospects. IEEE Trans. Electron Devices. Res. 56, No. 9 (Sep. 2009), 1799-1821.
  4. Javey, A. and Kong, J. 2009. Carbon Nanotube Electronics. Springer.
  5. Wei, B. Q., Vajtai, R. and Ajayan, P. M. 2001. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett., Res. 79, No. 8 (2001), 1172-1174.
  6. Collins, P. G., Hersam, M., Arnold, M., Martel, R. and Avouris, P. 2001. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett., Res. 86, No. 14 (2001), 3128–3131.
  7. Berber, S., Kwon, Y. –K. and Tomanek, D. 2000. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., Res. 84, No. 20 (2000), 4613–4616.
  8. Avorious, P., Chen, Z. and Perebeions, V. 2007. Carbon-based electronics. Nat. Nanotechnology. Res. 2, No. 10 (Oct. 2007), 605-613.
  9. Tsukagoshi, K., Alphenaar, B. W. and Ago, H. 1999. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature. Res. 401, No. 6753 (Oct. 1999), 572-574.
  10. Misewich, J. A., Martel, R., Avouris, P., Tsang, J. C., Heinze, S. and Tersoff, J. 2003. Electrically induced optical emission from a carbon nanotube FET. Science. Res. 300, No. 5620 (May 2003), 783–786.
  11. Wang, N., Tang, Z. K., Li, G. D. and Chen, J. S. 2000. Materials science: Single-walled 4 Å carbon nanotube arrays. Nature. Res. 408, No. 6808 (Nov. 2000), 50–51.
  12. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F. and Ruoff, R. S. 2000. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. Res. 287, No. 5453 (Jan. 2000), 637–640.
  13. Lu, F., Gu, L., Meziani, M. J., Wang, X., Luo, P. G., Veca, L. M., Cao, L. and Sun, Y. P. 2009. Advances in bioapplications of carbon nanotubes. J. Adv. Mater. Res. 21, No. 2 (2009), 139 –152.
  14. Du, C., Yeh, J. and Pan, N. 2005. High power density supercapacitors using locally aligned carbon nanotube electrodes. J. Nanotechnology. Res. 16, No. 4 (Feb. 2005), 350–353.
  15. Wei, P., Bao, W., Pu, Y., Lau, C. N. and Shi, J. 2009. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Letter. Res. 102, No. 16 (Apr. 2009), 166 808.
  16. Ago, H., Petritsch, K., Shaffer, M. S. P., Windle, A. H. and Friend R. H. 1999. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. J. Adv. Matter. Res. 11, No. 15 (1999), 1281–1285.
  17. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S. and Kim, J. M. 1999. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Letter, Res. 75, No. 20 (Nov. 1999), 3129–3131.
  18. Collins, P. G., Arnold, M. S. and Avouris P. 2001. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science. Res. 292, No. 5517 (Apr. 2001), 706–709.
  19. Dadgour, H., Cassell, A. M. and Banerjee, K. 2008. Scaling and variability analysis of CNT-based NEMS devices and circuits with implications for process design. In Proceedings of the IEEE International Electron Devices Meeting, 529-53.
  20. Hyperion Catalysis.
  21. Online. Available: http://www.fibrils.com.
  22. Kreupl, F., Graham, A. P., Duesberg, G. S., Steinhogl, W., Liebau, M., Unger, E. and Honlein, W. 2002. Carbon nanotubes in interconnect applications. J. Microelectronics Engg. Res. 64, No. 1–4 (Oct. 2002), 399–408.
  23. Li, J., Ye, Q., Cassell, A., Ng, H. T., Stevens, R., Han, J. and Meyyappan, M. 2003. Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Letter. Res. 82, No. 15 (Apr. 2003), 2491–2493.
  24. Li, H. and Banerjee, K. 2008. High-frequency effects in carbon nanotube interconnects and implications for on-chip inductor design. In Proceedings of the IEEE International Electron Devices Meeting, 525–528.
  25. McEuen, L., Fuhrer, M. S. and Park, H. 2002. Single-walled Carbon Nanotube Electronics. IEEE Trans. Nanotechnology. Res. 1, No. 1 (Mar. 2002), 78-85.
  26. Srivastava, N. and Banerjee, K. 2005. Performance Analysis of Carbon Nanotube Interconnects for VLSI Applications. In Proceedings of the IEEE/ACM International Conference on Computer-aided design.
  27. Xu, Y. and Srivastava, A. 2009. A Model of Multi-Walled Carbon Nanotube Interconnects. In Proceedings of the 52nd IEEE International Midwest Symposium on Circuits and Systems.
  28. Srivastava, A., Xu, Y. and Sharma, A. K. 2010. Carbon nanotubes for next generation very large scale integration interconnects. J. Nanophotonics. Res. 4, No. 041690 (May 2010), 1-26.
  29. Xu, Y. and Srivastava, A. 2009. A model for carbon nanotube interconnects. Int. J. Circuit Theory Appl. Res. 38 (Mar. 2009), 559-575.
  30. Burke, P. J. 2002. Lüttinger Liquid Theory as a Model of the Gigahertz Electrical Properties of Carbon Nanotubes. IEEE Trans. Nanotechnology. Res. 1, No. 3 (Sep. 2002), 129-144.
  31. Miano, G. and Villone, F. 2006. An integral formulation for the electrodynamics of metallic carbon nanotubes based on a fluid model. IEEE Trans. Antennas and Propagations. Res. 54, No. 10 (2006), 2713-2724.
  32. Nihei, M., Kondo, D., Kawabata, A., Sato, S., Shioya, H., Sakaue, M., Iwai, T., Ohfuti, M. and Awano, Y. 2005. Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. In Proceedings of the IEEE International Tech. Conference, 234-236.
  33. Li, H. J., Lu, W. G., Li, J. J., Bai, X. D. and Gu, C. Z. 2005. Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. Res. 95, No. 8 (Aug. 2005).
  34. Yan, Q., Wu, J., Zhou, G., Duan, W. and Gu, B. –L. 2005. Ab initio study of transport properties of multiwalled carbon nanotubes. Physical review B, Res. 72, No. 15 (Oct. 2005), 155425-1 – 155425-5.
  35. Naeemi, A. and Meindl, J. D. 2006. Compact physical models for multiwall carbon nanotube interconnects. IEEE Electron Devices Lett. Res. 27, No. 5 (May 2006), 338-340.
  36. Nieuwoudt, A. and Massoud, Y. 2006. Understanding the Impact of Inductance in Carbon Nanotube Bundles for VLSI Interconnect Using Scalable Modeling Techniques. IEEE Trans. Nanotechnology. Res. 5, No. 6 (Nov. 2006).
  37. Xu, Y., Srivastava, A. and Sharma, A. K. 2010. Emerging Carbon Nanotube Electronic Circuits. J. VLSI Design, Res. 2010 (2010), 1-8.
  38. Peng, N., Zhang, Q., Li, J. and Liu, N. 2006. Influences of ac electric field on the spatial distribution of carbon nanotubes formed between electrodes. J. Appl. Physics, Res. 100, No. 2 (Jul. 2006), 024309-1 – 024309-5.
  39. Zheng, M., Jagota, A.M., Strano, S., Santos, A. P., Barone, P., Chou, S. G., Diner, B. A., Dresselhaus, M. S., McLean, R. S., Onoa, G. B., Samsonidze, G. G., Semke, E. D., Usrey, M. and Walls, D. J. 2003. Structure-based carbon nanotube sorting by sequence dependent DNA assembly. Science. Res. 302, No. 5650 (Nov. 2003), 1545–1548.
  40. Alam, N., Kureshi, A. K., Hasan, M. and Arslan, T. 2009. Carbon Nanotube Interconnects for Low-Power High-Speed Applications. In Proceedings of the IEEE International Symposium on Circuits and Systems, 2273–2276.
  41. Majumder, M. K., Kaushik, B. K. and Manhas, S. K. 2011. Performance Comparison between Single wall Carbon Nanotube Bundle and Multiwall Carbon Nanotube for Global Interconnects. In Proceedings of the IEEE International Conference on Networks and Computer Communications (ETNCC), Udaipur, Rajasthan, 104-109.