Abstract

Ultrasonography is said to be the safest technique in medical imaging and is hence used extensively. But the images are noisy with speckle, acoustic noise and other artifacts. The classical segmentation methods fail completely or require post processing step to remove invalid object boundaries in the segmentation results. Problems associated with traditional mode, initialization and poor convergence to concave boundaries of the snakes, however, have limited their utility. A new external force for active contours largely solves both problems. This external force, call gradient vector flow (GVF), is computed as a diffusion of the gradient vectors
of a gray-level or binary edge map derived from the image. The resultant field has a large
capture range and forces active contours into concave regions. The intensity images are input
to the method and a GVF snake is initialized. The snake deforms and finally reveals the contour
of the kidney. The proposed method has successfully segmented the kidney part from the
ultrasound images.

Reference

- B. V. Dhandra, Ravindra Hegadi, Mallikarjun Hangarge, V. S. Malemth: Endoscopic
 image classification based on active contours without edges. ICDIM 2006: 167-172
- Jun Xie, Yifeng Jiang and Hung-tat Tsui, (2005): ‘Segmentation of Kidney from
 Ultrasound Images Based on texture and Shape Priors’, IEEE Trans. on Medical Imaging, 24,
 pp. 45 – 57.
 Detection of Human Kidney from Ultrasound Images using Markov Random Fields and Active
 Contours’, Medical Image Analysis, 9, pp. 1 – 23.
 Segmentation in Ultrasound Images of Kidney’, Proc.4th IEEE International Symposium on
 Signal Processing and Information Technology, Rome, Italy, pp. 42– 45.
- Nikos Paragios, Olivier Mellina, V. Ramesh, Gradient Vector Flow Fast Geometric Active
- K Bommanna Raja, M. Madheswaran, K. Thyagarajah, “A General Segmentation scheme
 for contouring Kidney Region in Ultrasound Kidney Images using improved Higher order Spline
 Interpolation”, 81-88, International Journal of Biological, Biomedical and Medical Sciences,
 Spring.2007
- Tim McInerney, Demetri Terzopoulos, Dept of Computer Science, University of Toronto,
 Toronto, ON, Canada, “Deformable Models in Medical Image Analysis: A survey”, Medical
- C. Xu, A. Yezzi, Jr., and J. L. Prince, “A Summary of Geometric Level-Set Analogues for
 a General Class of Parametric Active Contour and Surface Models”, in Proc. of 2001 IEEE
 Workshop on Variational and Level Set Methods in Computer Vision (VLSM 2001), pp. 104-111,
- C. Xu, D. L. Pham, and J. L. Prince, "Medical Image Segmentation Using Deformable

Index Terms

Computer Science

Pattern Recognition

Key words

Deformable models

medical image

segmentation

active contours

level sets

GVF