Abstract

Let \mathbb{N}_0 be the set of all non-negative integers and $P(\mathbb{N}_0)$ be its power set. An integer additive set-indexer (IASI) of a graph G is an injective function $f : V(G) \rightarrow P(\mathbb{N}_0)$ such that the induced function $f^+ : E(G) \rightarrow P(\mathbb{N}_0)$ defined by $f^+(uv) = f(u) + f(v)$ is also injective, where $f(u) + f(v)$ is the sum set of $f(u)$ and $f(v)$. An integer additive set-indexer f is said to be a weak integer additive set-indexer (weak IASI) if $|f^+(uv)| = \max(|f(u)|; |f(v)|)$ for all $uv \in E(G)$. The minimum number of singleton set-labeled edges required for the graph G to admit a weak IASI is called the sparing number of the graph. In this paper, we discuss the admissibility of weak IASI by a particular type of graph product called the edge corona of two given graphs and determine the sparing number of the edge corona of certain graphs.

References

- K. P. Chithra, K. A. Germina and N. K. Sudev, The Sparing Number of the Cartesian
On the Sparing Number of the Edge-Corona of Graphs

- D BWest, (2001). Introduction to Graph Theory, Pearson Education Inc.

Index Terms

Computer Science

Applied Mathematics
Keywords

Integer additive set-indexers mono-indexed elements of a graphs weak integer additive set-indexers

sparing number of a graph

degree corona of a graph