CFP last date
20 March 2024
Reseach Article

Quasi-Cut of Fuzzy Sets and Quasi-Cut of Instuitionistic Fuzzy Sets

by S. R. Barbhuiya
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 122 - Number 22
Year of Publication: 2015
Authors: S. R. Barbhuiya
10.5120/21854-5182

S. R. Barbhuiya . Quasi-Cut of Fuzzy Sets and Quasi-Cut of Instuitionistic Fuzzy Sets. International Journal of Computer Applications. 122, 22 ( July 2015), 1-8. DOI=10.5120/21854-5182

@article{ 10.5120/21854-5182,
author = { S. R. Barbhuiya },
title = { Quasi-Cut of Fuzzy Sets and Quasi-Cut of Instuitionistic Fuzzy Sets },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 122 },
number = { 22 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume122/number22/21854-5182/ },
doi = { 10.5120/21854-5182 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:11:12.008354+05:30
%A S. R. Barbhuiya
%T Quasi-Cut of Fuzzy Sets and Quasi-Cut of Instuitionistic Fuzzy Sets
%J International Journal of Computer Applications
%@ 0975-8887
%V 122
%N 22
%P 1-8
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to study the properties of t-cut set, strong t-cut set, t-quasi-cut set, strong t-quasi-cut set and ∈ ∨q-cut set of a fuzzy set μ. For any intuitionistic fuzzy A =<μA , νA> and α, β ∈ [0, 1], we define and study the properties of upper (α, β) cut set Α(α, β), strong upper (α, β) cut set Α(α, β), lower (α, β) cut set A(α, β), strong lower (α, β) cut set A(α, β), upper (α, β)-quasi-cut set A<(α, β)>, strong upper (α, β)-quasi-cut set A<(α, β)>, lower (α, β)-quasi-cut set A<(α, β)>, strong lower (α, β)-quasi-cut set A <(α, β)> and ∈∨q-cut set.

References
  1. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
  2. K. T. Atanassov, Intuitionistic Fuzzy Sets , VII ITKR's Session, Sofia,(Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci. , 1697/84) (June 1983)(in Bulg. )
  3. P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 85(1981) 264-269.
  4. S. K. Bhakat, P. Das, (∈, ∈∨q)-fuzzy subgroup, Fuzzy Sets and Systems 80 (1996) 359-368.
  5. S. K. Bhakat, P. Das, (∈, ∈∨q)-level subset, Fuzzy sets and systems, 103(3), (1999) , 529-533.
  6. L. C. Zhong, Introduction to fuzzy (I), (II),Beijing Normal University Press (1989),(1993).
  7. K. T. Atanassov, Intuitionistic Fuzzy Sets , Fuzzy sets and Systems. vol. 1(1986), 87-96
  8. K. T. Atanassov , On Intuitionistic Fuzzy Sets Theory, Published by Springer-Verlag Berlin Heidelberg, 2012.
  9. P. P. Ming, L. Y. Ming, Fuzzy topology I: neighbourhood structure of a fuzzy point and Moore-Smith convergence,, J. Math. Anal. Appl. 76(1980) 571-599.
  10. V. Murali, Fuzzy points of equivalent fuzzy subsets, inform Sci, 158 (2004) 277-288.
Index Terms

Computer Science
Information Sciences

Keywords

Cut set Strong cut set Quasi cut set Strong quasi cut set β) - cut set Upper β) -cut set Strong upper β) -cut set Lower β) -cut set Strong lower β) -cut set Upper β) -quasicut set Lower β) -quasi-cut set Strong upper β) -quasi-cut set Strong lower β) -quasi-cut set ∈∨q-cut set.