Call for Paper - December 2021 Edition
IJCA solicits original research papers for the December 2021 Edition. Last date of manuscript submission is November 20, 2021. Read More

Dynamic Response of Gravity Dam Model using Isogeometric Analysis

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2016
Authors:
Rodnny Jesus Mendoza Fakhye, Geraldo Carvalho Brito Junior, Roberto Dalledone Machado
10.5120/ijca2016911731

Rodnny Jesus Mendoza Fakhye, Geraldo Carvalho Brito Junior and Roberto Dalledone Machado. Dynamic Response of Gravity Dam Model using Isogeometric Analysis. International Journal of Computer Applications 151(4):7-14, October 2016. BibTeX

@article{10.5120/ijca2016911731,
	author = {Rodnny Jesus Mendoza Fakhye and Geraldo Carvalho Brito Junior and Roberto Dalledone Machado},
	title = {Dynamic Response of Gravity Dam Model using Isogeometric Analysis},
	journal = {International Journal of Computer Applications},
	issue_date = {October 2016},
	volume = {151},
	number = {4},
	month = {Oct},
	year = {2016},
	issn = {0975-8887},
	pages = {7-14},
	numpages = {8},
	url = {http://www.ijcaonline.org/archives/volume151/number4/26219-2016911731},
	doi = {10.5120/ijca2016911731},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

Gravity dams are structures commonly used in electricity generation, water supply, flood control and other purposes. Concerns about the safety of these structures when subjected to dynamic loads are an important issue for new projects and in maintenance programs for already built dams. Isogeometric Analysis (IGA) is a numerical approach that allows the discretization and analysis of continuous medium using the approximation functions generated in the construction of digital models or Computer Aided Design (CAD) models. In the present study, first IGA is applied in the study of free vibration behavior of a two dimensional dam model. Then the dynamic response of the structure subjected to time varying loads is obtained using the Central Difference Method (CDM). Numerical tests are performed to show the applicability and future applications are discussed.

References

  1. C. F. Corns, G. S. Tarbox, and E. K. Schrader, “Gravity dam design and analysis,” in Advanced dam engineering for design, construction, and rehabilitation, New York: Van Nostrand Reinhold, 1988, pp. 466–492.
  2. D. Balageas, C.-P. Fritzen, and A. Gemes, Eds., Structural Health Monitoring. London, UK: ISTE, 2006.
  3. C. R. Farrar and K. Worden, “An introduction to structural health monitoring,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 365, no. 1851, pp. 303–315, Feb. 2007.
  4. A. K. Chopra, “Earthquake resistant design of concrete gravity dams,” J. Struct. Div., vol. 104, no. 6, pp. 953–971, 1978.
  5. K. J. Bathe, Finite element procedures. New Jersey: Prentice Hall, 2006.
  6. T. J. R. Hughes, The Finite Element Method. Mineola, NY: Dover, 2000.
  7. J. N. Reddy, An Introduction to the Finite Element Method. Highstown: McGraw - Hill, 1993.
  8. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, 1st ed. Chichester: John Wiley & Sons, 2009.
  9. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 39–41, pp. 4135–4195, 2005.
  10. J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of structural vibrations,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 41–43, pp. 5257–5296, 2006.
  11. CEASB, Acervo técnico do CEASB. Itaipu Binacional: Centro de Estudos Avançados em Segurança de Barragens, 2015.
  12. Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 1–4, pp. 173–201, 2007.
  13. D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes, “Isogeometric shell analysis: The Reissner–Mindlin shell,” Comput. Methods Appl. Mech. Eng., vol. 199, no. 5–8, pp. 276–289, 2010.
  14. J. Kiendl, R. Schmidt, R. Wüchner, and K.-U. Bletzinger, “Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting,” Comput. Methods Appl. Mech. Eng., vol. 274, pp. 148–167, 2014.
  15. S. Cho and S. H. Ha, “Isogeometric shape design optimization: Exact geometry and enhanced sensitivity,” Struct. Multidiscip. Optim., vol. 38, no. 1, pp. 53–70, 2009.
  16. J. A. Cottrell, T. J. R. Hughes, and A. Reali, “Studies of refinement and continuity in isogeometric structural analysis,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 41–44, pp. 4160–4183, 2007.
  17. L. Piegl and W. Tiller, The NURBS book. Berlin: Springer Verlag, 1997.
  18. A. K. Chopra, Dynamics of structures: theory and applications to earthquake engineering. Upper Saddle River, NJ:. Pearson/Prentice Hall, 2012.
  19. R. J. Mendoza Fakhye, R. D. Machado, M. Rauen, and M. Arndt, “Free vibration analysis of gravity dam sections using isogeometric analysis,” Int. J. Eng. Appl. Sci., vol. 8, no. 4, pp. 1–9, 2016.
  20. V. P. Nguyen, C. Anitescu, S. P. A. A. Bordas, and T. Rabczuk, “Isogeometric analysis: An overview and computer implementation aspects,” Math. Comput. Simul., vol. 117, pp. 1–114, 2015.
  21. R. W. Clough and J. Penzien, Dynamics of structures. Berkeley, CA: Computers & Structures Inc., 1995.
  22. R. B. Jansen, Advanced dam engineering for design, construction, and rehabilitation. Springer Science & Business Media, 2012.
  23. FEMA, Federal Guidelines for Dam Safety. USA: Federal Emergency Management Agency, 2005.

Keywords

Dynamic response, Isogeometric analysis, Gravity dam.